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Abstract

In this paper, I unveil a novel mechanism through which a housing market boom can

lead to a deep recession by decreasing physical investment and rendering capital scarce.

This inefficiency arises from a crowding-out effect: the available liquidity, which could

otherwise be channeled into firms’ capital investments (e.g., factories, equipment, R&D), is

redirected toward the residential sector during a housing boom. The crowded-out physical

investment subsequently amplifies the losses of the bust and prolongs the duration of the

recession by making the physical capital stock limited at the onset of the bust. Using a novel

identification method of a shock that generates housing boom-bust cycles in a structural

vector regression model, this paper empirically documents that a 2% jump in housing prices

can crowd out 1% of physical investment at the peak. Then, I develop a heterogeneous

household model to quantify the welfare effects of this novel mechanism. I show that the

crowding-out effect can account for up to 13% of the welfare losses during the recession

period. Finally, I illustrate that a macroprudential policy curbing the overheated housing

market can significantly mitigate the crowding-out effect and welfare losses.
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1 Introduction

The economic downturn that followed the Great Recession in 2007 generated a significant

upswing in unemployment rates and declines in output, consumption, and investment.1Numerous

researchers have endeavored to comprehend the source of this recession and explore the mech-

anisms through which the source spread. The consensus among many scholars posits that the

boom and subsequent bust in the housing market exacerbated the collapse of financial markets,

leading to a recession, yet people have not reached an agreement on how this boom-bust cycle

led to the recession. The Great Recession lingered for an extended period, a phenomenon

some attribute to behavioral inefficiency such as self-fulfilling equilibrium and “animal spirits”2,

liquidity traps3, and the zero lower bound (ZLB).4 These channels typically suggest that the

fallout from the housing market bust had tangible economic impacts, mainly through financial

friction on the supply side by influencing production. Moreover, on the demand side, real estate

served as collateral, enabling households to borrow money and smooth consumption patterns5,

but after the recession, the fall in price of real estate significantly eroded household wealth,

adversely affecting the real economy. In this paper, I propose a new mechanism, through which

a housing market boom preceding a recession can contribute to the economic downturn.

Figure 1: Nonresidential and residential investment share of GDP, over NBER Boom

1as examined by Mian and Sufi (2010) and Grusky et al. (2011).
2Islam and Verick (2011) and Cochrane (2011) discuss this problem.
3Brunnermeier (2009), Ivashina and Scharfstein (2010) and Jermann and Quadrini (2012)argue that the lack of

liquidity of financial institution, mostly referring to the commercial bank, helps the crisis diffuse around and induce
large recession.

4Christiano et al. (2015), Fisher (2015), Guerrieri and Lorenzoni (2017) and Bayer et al. (2019) did these works.
5Eggertsson and Krugman (2012), Mian and Sufi (2010), Mian and Sufi (2014) and Qian (2023)discuss this

problem. Households extracted their equity via collateral during the boom period, which substantially increased
consumption. This constructed a mirage through general equilibrium. When the bust came, people struggled against
rapid constraint tightening, which led to the Great Recession.
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To illustrate the intuition of the mechanism emphasized in this paper, I show nonresidential

and residential investment as a share of GDP, spanning from 1975 to 2012, in Figure 1. The

shaded areas represent the boom periods as per NBER business cycle data, with the numbers

above represnet the average shares of the two series during these booms. Notably, the boom that

began in 2001, subsequently interrupted by the Great Recession at the end of 2007, features a

peak in residential investment and a trough in nonresidential investment.

The focus of this study is on the mechanism through which an increase in investment in

residential assets generates capital scarcity. I dub this residential investment without fundamental

support (i.e., a housing bubble) as overbuilding. When this housing boom is a bubble6 in

the sense that it is not supported by the corresponding fundamentals, the available liquidity,

which could otherwise be channeled into firms’ capital investments (e.g., factories, equipment,

R&D), is directed toward the residential sector. Indeed, the correlation between residential and

nonresidential investment over GDP ratio is significantly negative, -0.34.

In this paper, I introduce imperfect information and noisy signals about the state of the

future housing market to initiate a housing bubble because it is the most convenient and suitable

way to generate the crowding-out effect. However, the crowding-out effect is not unique

to imperfect information. Other factors, such as real frictions (e.g., financial accelerators,

shadow banking, search and matching, moral hazard) and behavioral frictions (sentiment shocks,

irrational expectations) can also produce similar inefficiency. This suboptimal reallocation

of resources toward the residential sector within financial institutions results in inefficiencies

compared to a first-best allocation scenario.

This paper first empirically demonstrates the existence of the crowding-out effect and its

significance in explaining the shortfall in physical investment subsequent to a housing market

boom. I introduce a novel identification strategy aimed at exploring the effect of a news (to

housing price inflation) shock in the context of imperfect information. Upon receiving news

that housing prices are expected to rise in the future, households will react immediately, as this

alters their expectations. Specifically, the crowding-out effect is not limited to news shocks and

imperfect information, although these provide the most straightforward illustration of the effect.

A single news shock can generate a prolonged housing market boom, but to produce the same

boom with other shocks, I require strong assumptions regarding their persistence. Household

cannot verify whether news about future inflation in housing prices is true or fake before the

news is realized, because of imperfect information. I call the fake news shock as a news shock

that does not realize when it should. Because the fake news shock ultimately does not change

the fundamentals, people’s reactions to it are socially suboptimal and inefficient. The empirical

results reveal that a 2% increase in housing prices can yield a 1% decrease in physical investment

at the peak. After the market busts, a 1% decline in housing prices correlates with a 0.1%

decrease in consumption, which implies moderate welfare loss.

6Throughout this paper, I define a bubble as an inefficient boom, i.e., a boom that is not supported by fundamen-
tals.
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Next, I consider a Bewley-Huggett-Aiyagari model with housing and consumption, financial

friction, and heterogeneous households. I present analytical results emphasizing the factors

shaping the physical capital scarcity (underinvestment). Note that each of these three elements

plays a pivotal role in determining the crowding-out effect. First, housing and consumption are

closely connected with each other, and together, they (C and H) pin down the crowding-out

effect (∆I), given the goods market cleaning condition Y = C + I + ∆H . The presence of

financial friction and household heterogeneity quantitatively impact the crowding-out effect,

constituting a potential amplification mechanism.

My analysis identifies three pivotal factors that modulate the crowding-out effect, correspond-

ing to a distinct functional role played by residential assets .

The first characteristic of the residential asset, the utilitarian feature that residential assets

generate utility to households directly, corresponds to the relative intratemporal elasticity of sub-

stitution (IAS) to intertemporal elasticity of substitution (IES) between housing and consumption,

which has been extensively scrutinized within the housing literature. However, most analytical

frameworks are partial equilibrium and confined to the housing sector for a considerable period

of time.7 The interplay between the intratemporal and intertemporal elasticity of substitution has

been overlooked within a general equilibrium framework and the importance of the pass-through

mechanism between housing and consumption in determining the crowding-out effect.

The relative elasticity between them governs the immediate response of consumption to

changes in housing prices, and the extend of crowding-out effect. When the relative intratemporal

elasticity of substitution exceeds one8 and continues to grow, the demand for intratemporal

consumption smoothing supersedes that for intertemporal consumption smoothing (the increased

holding of residential asset decreases the marginal utility of consumption and households

will determine consumption by balancing consumption smoothing between this period, UH
UC

=

f(pH,, p
′
H), and the next period UC = βRUC′). Consequently, there is either a modest increase

or even a decline in consumption, as the complementarity between consumption and housing

services weakens---in other words, the substitution effect becomes increasingly pronounced.

Therefore, the crowding-out effect is attenuated, an increase in residential investment is associated

with a more modest rise in consumption.

In addition to the relative intratemporal elasticity of substitution, the financial friction also

exerts the crowding-out effect, a concept well-embedded within the literature.9 The boom in

7For instance, when the utility function is separable in housing and consumption, the relative intratemporal
elasticity is always one, i.e., IAS

IES = 1. Iacoviello (2005), Liu et al. (2019) and Greenwald (2018)used the separable
utility function to analyze their problems. However because their models lack an intratemporal channel, they can
only weight other elements such as bubbles, self-fulling expectations and multiple credit constraints to generate a
sufficient consumption response to housing prices. In contrast, Berger et al. (2018) and Kaplan et al. (2020)used the
nonseparable utility function to discuss the housing problem and focused more on the consumption response, which
requires the intratemporal effect.

8Khorunzhina (2021) provides empirical evidence of IAS
IES > 1 in the housing market.

9Garriga and Hedlund (2020),Hurst et al. (2016),Bailey et al. (2019), Garriga et al. (2017), Gorea and Midrigin
(2017) and Chen et al. (2020) contribute to this literature and investigate how financial frictions influence the cross
effect between housing and consumption.
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the residential property market alleviates credit constraints of households, and households who

previously are constrained by liquidity expend their spending.10 Therefore, an rise in financial

frictions enhances the distributional marginal propensity to consume (MPC) effect, thereby

magnifying the crowding-out effect as the increase in consumption indicates a decrease in

physical investment.

Moreover, household heterogeneity further amplifies the crowding-out effect through idiosyn-

cratic income shocks and wealth distribution. Unlike representative agent models, households

with uninsured income---subject to idiosyncratic shocks---exhibit a precautionary saving motive

and consequently maintain a higher saving rate. During periods when income risk is countercycli-

cal11, overbuilding tends to coincide with economic upswings. Lower risk encourages households

to reduce capital accumulation, thereby intensifying the crowding out of investment. Beyond

the uncertainty channel, households with greater disposable income are also the primary driver

of overbuilding. Conversely, households facing tighter budget constraints tend to have a higher

MPC and therefore exhibit greater increases in consumption, facilitated by equity extraction.

Consequently, the more the wealth distribution skews to the left and the MPC distribution to the

right12, the more pronounced the crowding-out effect becomes.

Finally, I develop a full-fledged heterogeneous agent model with financial frictions and

imperfect information. Households have two types of assets to invest in: liquid and illiquid.

However, they are occasionally constrained and cannot borrow as much as they would like from

mortgage debt. On the supply side, two representative firms produce final goods and construct

new properties using capital and labor in a complete market. The estimated model using Bayesian

techniques can successfully replicates key empirical moments regarding the residential and non-

residential assets(e.g., corr(pH , IH), corr(I, IH), and corr(I,Q) ). By comparing the scenarios

with or without crowding-out effect, I demonstrate that the crowding-out effect can explain

up to 13% of the welfare losses during the recession period. Furthermore, by implementing

a countercyclical macroprudential policy to control credit expansion capacity and overheated

housing market, a policymaker could calm the boom-bust cycle and approximately halve the

welfare loss generated by the crowding-out effect.

This paper offers several noteworthy contributions to the existing literature. First, it estab-

lishes a novel link between the housing market boom (overbuilding) preceding the recession and

the recession itself. A lot of researches suggest that the housing market boom and recession are

driven by expectations and speculation as opposed to sustainable growth. This is evidenced by the

work of Landvoigt (2017), McQuinn et al. (2021) and Kaplan et al. (2020), among others. Other

10A phenomenon termed “equity extraction” that was first proposed by Bhutta and Keys (2016)
11Debortoli and Galí (2017), Acharya and Dogra (2020) and Bilbiie and Ragot (2021) analyzed this problem

linked with monetary policy theoretically. Storesletten et al. (2004), Schulhofer-Wohl (2011) and Guvenen et al.
(2014) analyzed the countercyclical idiosyncratic shock empirically.

12“In 2019, the top 10% of U.S. households controlled more than 70 percent of total household wealth” as argued
by Batty et al. (2020) and related data can be found in Distributional Financial Accounts on the Federal Reserve
website. Orchard et al. (2022) demonstrates that the MPC distribution is heavily right-skewed.
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studies have posited that the credit supply also played a significant role, a perspective supported

by Campbell and Cocco (2007), Favara and Imbs (2015), Favilukis et al. (2017), Justiniano et al.

(2019), Mian and Sufi (2022) and Martínez (2023). However, real estate only functioned as

an asset in the context of collateral constraints among these studies, and the inherent recession

comes from the demand side that is initiated by the collapse in housing market. They omit

the supply-side effect of the recession, while many studies contend that capital misallocation

contributed significantly to the Great Recession, such as Justiniano et al. (2010) and Justiniano

et al. (2011), with supply-side effects accounting for nearly 40% of the economic downturn.

When the major companies could undertake extensive margin investments through self-financing,

as outlined in Bachmann et al. (2013) and Winberry (2016)„ the housing market boom not only

impacted investment in the construction sector (Boldrin et al. (2013)) but also diverted physical

investment from other sectors. Using this perspective, I investigate, the crowding-out effect, for

which Chakraborty et al. (2018) provides evidence via micro data.

My paper is related to several literature. First, Dong et al. (2022) and Dong et al. (2023).

They also employs the term “crowding-out” to describe the investment tradeoff and capital

misallocation between housing and non-housing sectors. However, their conceptualization of

"crowding-out" aligns more closely with firms’ balance sheet portfolio adjustments in partial

equilibrium, and my paper focuses on another aspect, the household sector with general equi-

librium, whose view maps more to reality13, given that enterprises do not hold the majority of

residential assets, nor do these assets play a pivotal role in production activity. Meanwhile, my

paper is also closely related to Rognlie et al. (2018). They proposed that an exogenous investment

hangover at the outset precipitated a demand-driven recession due to high real interest rates,

nominal rigidity, and the ZLB on monetary policy. Conversely, my paper argues that the financial

friction and household heterogeneity play important roles in crowding out physical investment.

Furthermore, my paper illustrates that even in the absence of nominal rigidity, overbuilding can

also catalyze a supply-driven recession with significant welfare loss.

Second, this paper not only provides a new explanation for the severity of the Great Recession

but also sheds light on elements of policy failure as discussed by Mitman (2016) and Antunes et al.

(2020). Accordingly, it also makes a valuable contribution to the literature on macroprudential

policy. Since the recession is propelled by both supply and demand dynamics, singular stimulus

efforts in the demand sector fail to effectively counteract the economic decline. Neither of the

aforementioned studies considers the supply of housing services, although Khan and Thomas

(2008)demonstrated that a general equilibrium framework could yield entirely distinct results.

My research extends the findings of Chodorow-Reich et al. (2021), Chahrour and Gaballo (2021)

and Beaudry et al. (2018) and emphasizes investment in the production (of consumption) sector,

arguing that overbuilding exacerbated the crowding-out effect and incited a more profound

recession, which could be dramatically attenuated by macroprudential policy on the supply side.

13Kaplan et al. (2014) shows that “Housing equity forms the majority of illiquid wealth for households in every
country with the exception of Germany”.
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Furthermore, this research contributes to the literature with a methodological advancement: a

new implementation of the SVAR identification strategy for distinctly identifying news and fake

news shocks with endogenous contemporaneous effect, predicated on the approach of Wolf and

McKay (2022). Almost all the previous identification methods to news shock, such as Barsky

and Sims (2012), Blanchard et al. (2013), Barsky et al. (2015) and Sims (2016), identified a

TFP shock that is observable and exogenous, and its news does not have any contemporaneous

effect on itself. However, there are a many shocks that cannot be directly observed, such as news

about inflation or monetary policy news shocks.14 My paper extends the identification strategy to

be applicable for the news shock with the contemporaneous endogeneity, as well as fake news

shock.

Numerous studies emphasize the importance of household heterogeneity in explaining the

housing boom-and-bust cycle, either empirically, such as Etheridge (2019), Mian et al. (2013),

Li et al. (2016) and Díaz and Luengo-Prado (2010), or theoretically, such as Kaplan et al.

(2020), Favilukis et al. (2017) and Garriga and Hedlund (2020). This paper builds a model that

demonstrates that the distribution of wealth and income is pivotal in determining the strength of

overbuilding and supplements the literature on how expectations and animal spirits can fuel a

boom. To solve the model with imperfect information, earlier research either employed a guess-

and-verify approach, as in Lorenzoni (2009) and Barsky and Sims (2012), or a reconstruction

methodology, as demonstrated by Baxter et al. (2011), Blanchard et al. (2013) and Hürtgen

(2014), to solve imperfect information DSGE models. However, these methods necessitate

specific analytical equations to regulate the unobserved state variable with other state variables,

which is unfeasible to derive from a heterogeneous agent model due to its extensive number of

state variables. To achieve this, I propose an enhancement in the numerical solution approach for

handling an intricate heterogeneous agent model with imperfect information at both the first and

second order. Following Uhlig (2001), I reconstruct the linearized model and solve the policy

function via a new system of equations.

The remainder of this paper is organized as follows. In Section 2, I estimate a SVAR model

with a novel identification strategy to empirically investigate the crowding-out of physical invest-

ments in response to fake news shocks to housing prices. Section 3 analytically illustrates how the

crowding-out effect could arise and its magnitude is determined by several fundamentals in the

simplified Bewley-Huggett-Aiyagary economy. Section 4 presents a full-fledged heterogeneous

agent model. Using the estimated model, I quantitatively investigate the welfare loss due to the

crowding-out effect and the efficacy of macroprudential policies. Section 5 concludes the paper.

14For instance, news that indicating a decrease in the federal funds rate in the future will persuade households to
increase their consumption in the current period, but this contemporaneous economic boom will increase the federal
funds rate in the present.
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2 Empirical evidence

In this section, I first introduce a new strategy to identify news shocks with contemporaneous

endogeneity. Using this new method, I then demonstrate that the crowding-out effect is empiri-

cally significant. After investigating the news shock, I further extend the algorithm to identify

the economic effect of the fake news shock and show that the crowding-out effect is significant

in explaining the recession after the housing market bust.

2.1 Real price news shock

In the appendix B.2.2, I illustrate that a contemporaneous real price shock can also empirically

measure the crowding-out effect from a housing market boom. While the mechanisms I have

proposed in this paper may be theoretically valid, they might not accurately portray the realities

leading up to the Great Recession. The source for the prerecession housing market boom

extends beyond merely an exogenous contemporaneous real housing price shock. Other variables

such as optimistic expectations, excess credit supply, and a secular decline in interest rates

also contributed to this boom. To delve deeper into this issue, this section employs a SVAR

model to identify the effect of a news shock on housing demand. My objective is to answer

the following question: given future expectations of housing price inflation, how would other

economic components respond to this anticipatory shock? I adopt, with minor modifications,

the method proposed by Barsky and Sims (2011) (henceforth referred to as ’BS’). Through

this approach, the news shock is identified as the component that can account for the largest

forecast-error variance of the housing price while maintaining some orthogonal restrictions to

exclude the effect of other contemporaneous shocks. This orthogonal restriction procedure is

designed to mitigate any risk that an unexpected contemporaneous shock realized in the future

could influence the forecast error. Furthermore, rather than adopting the level specification used

by BS, I process the data using a hybrid specification or detrending method as mentioned in

the previous section. This alternative approach was necessary because the data I used failed the

unit-root test in the level specification.

First, I propose the reduced-form VAR system as

yt = Φ1yt−1 + Φ2yt−2 + Φ3yt−3 + ...+ ut (1)

where the residual follows ut = Qεt, ε ∼ N (0, I) and Ω = var(ut) = QQ′. Moreover I assume

that P is the Cholesky decomposition of the covariance matrix of residual ut, so P = chol(Ω)

will hold. I further define the “news” vector R = [r1, r2, ..., rN−1, rN ]
′ where ri represents

the unknown parameters of the vector R that need to be estimated. It measures the effect of

housing-price-change news. The response to the news will be PR, and by introducing this

“vector shock” R, I can directly solve for the response to the news shock and avoid drawing
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difference alternative orthogonal matrix.

Note that solving the response vector R, instead of solving the response matrix Q, is more

convenient and can provide an analytical solution as argued by Uhlig et al. (2004). As long as

the orthogonal assumption 3 holds, we can find an orthogonal matrix Q that satisfies Q′R = ei

where i ∈ [1, N ] ∩ N. Multiply Q by the LHS to yield R = Qei, and hence R is just the ith

column of Q. Throughout this paper, I will combine these two definitions, namely, 1). response

vector R and 2) a shock R, because they represent the same thing in the identification problem.

After proposing the VAR formula, I define the forecast error decomposition along the

horizontal up to time h as

fevdin,h =
e′nvar(y

i
t+h − Et−1y

i
t+h)en

e′nvar(yt+h − Et−1yt+h)en

the economic meaning of which is that the proposition of variance of variable n’s expectation

error that can be explained by shock i from time 0 to time h. The total forecast error from 0 to

period H with unit weight should be fevdn =
∑H

h=0 fevdn,h where H = 12.15 The superscript i

in vector yt denotes the impulse response spurred by shock i, and the subscript n in vector yt
(equivalent to e′nyt) denotes the nth variable in vector yt. Therefore, yin,t denotes the response

of variable n at time t to shock i, and I will use this notation throughout the discussion in this

section.

To identify the news shock, I solve problem 7 below that identifies a shock R∗ that can best

explain the variance in the expectation error of housing prices.

R∗ = argmaxfevdn = argmax
H∑
h=0

e′n

(∑h
s=0Φ

sPRR′P ′Φ′s
)
en

e′n

(∑h
s=0Φ

sPP ′Φ′s
)
en

(2)

s.t

R′R = 1 (3)

e′jPR = 0 (4)

The first constraint 3 guarantees the orthogonality of response R∗ and ensures the unit realization

of the news shock that pertains to the corresponding column of orthogonal matrix Q; otherwise,

there always exists an infinitely large shock e′nR = ∞ that renders the identification meaningless.

Additionally, it indicates that the existence of maximization problem 2 as the Hessian of the

objective function is semi-positive definite where the maximized point is not on the saddle

point. The second constraint 4 rules out any contemporaneous shock in the future that influences

15Uhlig et al. (2004) and Barsky and Sims (2011) discussed the weight-selection problem and arbitrary maximized
horizontal problem. Based on their argument, I choose the unit weight and 3-year forecasting as the baseline cases,
which is reasonable and robust in the range from 5 quarters to 40 quarters.
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the expectation error. In essence, there are two type of shocks that can affect the expectation

error yt+h − Et−1yt+h: one is the news shock that arrives at time t but realizes at a future time

from t + 1 to t + h (based on the type of news and how informative it is); the second is the

contemporaneous shock that arrives at any time from t to t + h εt+i,∀i ∈ [0, h]. It would be

inappropriate to posit that the news shock accounts for more variation in the expectation error

than the contemporaneous shock. Sims (2016) asserts that, typically, this proposition does not

hold in reality. As such, I necessitate this secondary constraint 4 to segregate the effects of

the contemporaneous shock from the identified R∗. The objective of the above problem 2 is to

pinpoint a shock, apart from any contemporaneous shock that influences variable j, which can

best explain the expectation error. Appendix C.1 discusses the requirement of the orthogonal

restriction in detail.

While the method of identification employed here is not exclusive to news about housing

prices—news about endogenous variables such as commodity prices, marginal costs or inflation

could also fit—I limit the focus to the housing market in this paper. Here, i denotes the housing

price news shock, and yn,t represents the housing price. Given that the identified news shock R∗

is subject to sign, I further impose a sign restriction on the impulse response yn,t to generate a

positive demand shock on the housing price. The final issue in the identification of 2 involves

finding a variable j in constraint 4 that aids in eliminating the possibility of a contemporaneous

shock during identification.

Before elaborating on the construction of variable j that has zero contemporaneous effect of

the news shock i, it is worth discussing proposition 1. This proposition highlights that canonical

identification techniques, such as zero restriction, sign restriction, and long-run restriction, are

ineffective for identifying the news shock in this context without constructing or finding variable

j.

Proposition 1. The identification of a news shock R∗ through Equation 2 is unique to covariance

of the residual Ω = PP ′ from VAR’s DGP 1.

Proof. Give the covariance matrix of the residual from the DGP 1, the Cholesky P is unique to

covariance matrix Ω. Following Rubio-Ramirez et al. (2010), we know that any identification of

the DGP is unique to PQ where Q is an orthogonal matrix. To identify the news shock, I solve

the maximization problem 2 to obtain the news shock R∗ that maximizes fevdn subjecting to

two constraints, 3 and 4, and the rotation Q is identity Q = I . However, when the rotation Q is

not identified, i.e., for any different response matrix PQ̃, the optimization problem that helps to

find R̃∗ from g
(
R̃
)
= 0 is equivalent to that employed to find R∗ from g (f (R)) = 0 as long as

f (R) = R̃ holds. If the mapping f(·) and its inverse f−1(·) are all bijections, for any R̃ ∈ RN

there will exist a unique R ∈ RN that satisfies f (R) = R̃. It is easy to set f−1(R̃) = Q̃R̃ and

f(R) = Q̃′R. Therefore, the corresponding identified news shock R̃ must satisfy R̃∗ = Q̃′R∗

because of Equation 2, and the impulse response of the news shock is identical to the Cholesky

identification PQ̃Q̃′R∗ = PR∗.

10



Proposition 1 intuitively suggests that news or information is neutral to the fundamentals,

and individuals respond to it based on their perception or belief about the reliability of the

news. Whether the news is genuine or false can only be discerned after the fundamental shock is

realized and observed by economic agents several periods later. Therefore, the initial response to

the news at time zero is unique to the covariance matrix, and the authenticity of the news, along

with the corresponding response, cannot be determined by any rotation method on Cholesky P .

Proposition 1 above raises the following question: Why should we construct variable j rather

than seek one that is observable in reality? This deviation from the standard news literature,

where scholars typically focus on TFP shocks and the underlying exogenous TFP is observable

or calculable from data, arises due to the unobservable nature of the demand shock and the

exogenous fundamental variation path. As such, our task is to identify a variable j that is

correlated with the contemporaneous variation of housing demand within the demand function,

which I denote as the direct fundamental impact. The term “fundamental impact” refers to an

index of the core elements that drive the housing demand function, i.e., the preference ϕt in the

Cobb-Douglas utility function U(ct, ht, lt) =
(cϕtt h

1−ϕt
t )

1−σ

1−σ + κ
l1+ψt

1+ψ
, following ϕt = (1− ρϕ)ϕ+

ρϕϕt−1 + wt−τ + wτt where wt−τ is the news shock to housing demand. The modifier “direct”

indicates that variable yjt reflects the contemporaneous impact ϕt, rather than ϕt+i. Moreover,

when imperfect information exists and households cannot precisely observe the fundamentals, as

discussed in Section 2.2, the fundamental impact yjt should serve as an indicator for the perceived

fundamentals ϕt|t, rather than the true fundamentals. Consequently, survey data appear to be

the most suitable source of information for excluding contemporaneous shocks via constraint

4. However, neither the true fundamentals nor the perceived fundamentals are observable, and

all observations in the survey relating to the impact of fundamentals are endogenous, tainted by

macro variables and the endogenous response to news shocks. Therefore, this paper proposes a

method to clean the endogenous perception data and eliminate the contemporaneous endogenous

news effect.

Before discussing the purification process, I first describe the data that I can use to remove

endogenous perceptions of the status of the housing market. In this paper, I use the NAHB/Wells

Fargo Housing Market Index (HMI), which is a monthly survey of NAHB members regard-

ing their perception of the current status of the housing market Υt(in equation 5), and their

expectation over the next six months EtΥt+6(in Equation 6).

To intuitively elucidate the purification process, let us consider a model with perfect informa-

tion. Assume that Υt represents survey data about people’s perception of the housing market and

follows the relationship

Υt = ρΥt−1 + α1xt + wt−τ + ut + α2wt (5)

where xt stands for any macroeconomic variable such as the interest rate, GDP, unemployment

rate, etc. The coefficient α1 quantifies the cross-linkages between macroeconomics and percep-
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tions of fundamentals. For instance, a monetary policy shock may initially affect the interest

rate and output, leading to a commensurate change in Υt. In this context, wt−τ represents a

news shock announced τ periods ahead. Moreover, ut denotes a contemporaneous shock, and

α2 captures the endogenous contemporaneous effect induced by news shock wt. If households

anticipate the realization of the shock three periods ahead, they would react in the present time.

Because of this contemporaneous response α2, news shock wt will exert an endogenous effect at

the time of its arrival, in addition to the direct effect occurring three periods later when the shock

materializes. Under rational expectations, the expectation about housing market status τ periods

ahead will follow

EtΥt+6 =

ρ6Υt + α3xt +
∑n=τ

n=1 ρ
6−nwt−τ+n τ ≤ 6

ρ6Υt + α3xt +
∑n=6

n=1 ρ
6−nwt−τ+n τ > 6

(6)

To simplify our discussion, I have deliberately omitted terms with additional lags, such as Υt−2,

xt−1, in Equations 5 and 6. These terms may indeed manifest in these models, and as such, I

performed a range of robustness tests to investigate these independent variables in Appendix

C.6 and better understand the underlying models. However, note that these equations make an

implicit assumption: any other macroeconomic shocks, such as a monetary policy shock, TFP

shock, or marginal cost shock, will influence the status of the housing market solely through

macro variables xt, without any direct effects. This assumption parallels the notion that Υt

occupies the first row of yt in Equation 1, corresponding to the first column of the Cholesky P .

The basic idea of this purification process is to identify the parameters ρ, α1, α2 and w−1,

w−2... that yield the purified housing market status, denoted as Υ̂t = Υt − α2wt. However,

canonical regression-based methods cannot be used here because of endogeneity and the im-

perfect identification problem. For instance, even for the simplest model of 5 (or 6) without

aggregate effects, the regression of Υt on Υt−1 (EtΥt+6 on Υt) will yield biased results because

wt−τ is already embedded into Υt−1(Υt). Furthermore, the residual of this regression represents

a "near" moving average process that contains several components instead of wt−τ itself. Thus,

the second regression, a regression of Υt on the residual or its lagged and lead terms will not be

exactly α2, and Υ̂t will still encompass some amount of contemporaneous effect, wt. In addition

to addressing the standard issues of endogeneity and heteroskedasticity that are common in OLS

regression, another crucial challenge must be overcome: understanding the informative power of

news wt, specifically how far in advance households become aware of it. This challenge will

directly impact the structure of the expectation 6 and, subsequently, the structure of the residual,

which I use to extract the wt term from Υt. Given that the only observable expectation linked to

a six-period lead, the form of the expectation would take a different form when the news arrives

at different periods prior to realization. Therefore, I use the maximum likelihood estimation

method to estimate and purify the contemporaneous endogenous effect α2 and the likelihood of

different informative power of the news can be used to determine how many periods ahead that
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the news is announced to households. In Appendix C.3 and C.3, I provide a range of numerical

and empirical tests demonstrating that this purification method can effectively eliminate the

endogenous news effect wt from the perception of housing market status Υt, albeit to a certain

scale. Additionally, I also conduct a series of robustness checks by using an instrumental variable

to purify Υt through 2SLS regression analysis.
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Figure 2: IRF to one unit housing price news shock at 90% confidence band

Figure 2 presents the IRFs of a one-unit news shock that delivers information about future

housing price to agents, with the red dashed lines indicating the 90% confidence band, which

visibly confirms the significant crowding-out effect. The pattern of the housing price response

closely mirrors that observed in the contemporaneous shock, although the boom in the housing

market is nearly twice as significant. Housing prices progressively rise from 30bps to a peak of

200bps, approximately five times larger than that under the contemporaneous shock. This marked

expansion in the housing market, driven by expectations and news shocks, triggers a decrease in

capital prices five times larger than the surge in housing prices. Households considerably decrease

their capital holdings, even entering into negative positions (in debt), thereby depressing capital

prices due to reduced demand. This reveals the crowding-out effect as a manifestation of capital

misallocation at the micro level. These observations underscore the effective identification of

news shocks and demonstrate the reliability and transparency of the results. The study aligns with

existing literature that attributes housing market booms primarily to expectations and slackness

in the credit market. Additionally, it highlights the sensitivity and fragility of the housing market

during the prerecession period, as the market could be triggered into a boom merely by initial

expectations, culminating in a considerable peak without any observed hesitations or declines.

This housing market boom also coincides with significant overbuilding, which is five times
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greater than that observed under contemporaneous shocks, culminating at 300bps. Concurrently,

the output experiences a slight yet insignificant increase due to general equilibrium effects, with

the economy overheating. The contemporaneous response of consumption exhibits a small but

insignificant decrease (10bps), potentially resulting from a stronger substitution effect than the

wealth effect, which is revealed in new evidence from survey data (Kuang et al. (2023)). As

previously observed, substantial physical investment is crowded out during periods of housing

market booms and overbuilding. In comparison to the response of physical investment to a

contemporaneous housing price shock, investment is crowded out to a greater but milder extent

(compared to the difference in housing price and stock price), reaching up to 100bps. This is

reasonable, as the crowding-out effect arises from the general equilibrium among investment,

output, and consumption, which continues to experience a mild change.

2.2 Real price fake news shock

Due to Proposition 1, canonical identification methodologies such as sign restriction (Uhlig

(2005)) and short-run restriction ((Sims (1980) and Basu et al. (2006)) are insufficient to differ-

entiate true news from fake news within the previously identified news shock. As an alternative,

I introduce a novel identification strategy through which the effect of true news about future

housing prices is refined by a contemporaneous shock during the realization of the news shock,

thus isolating the effect of fake news.

In Section 2.1, I previously presented the concept of the news shock R∗, representing the

shock that best accounts for the expectation error over the nextH periods from period 0. However,

this shock is agnostic to its own status and does not yield any insights regarding whether it is

a true or fake news. This is because it is identified based on expectation error, devoid of any

proxy for the underlying "fundamental situation", and both fake and true news can elicit identical

responses before the news type is realized. Despite the neutrality of the news shock R∗ and our

inability to directly identify fake news prior to its realization, I design the strategy to differentiate

between fake and true news by adjusting the combined news with a contemporaneous shock and

refining the preceding impulse response. Before introducing this identification strategy, which

allows me to distinguish between fake news and true news, I first present two assumptions with

microfoundations as the basis of identification.

Definition 1. Denote the response to fake news realized at time τ as UF =
{
y0 = R1, yi

}i=∞
i=1

and the response to true news realized prior to time τ as UT =
{
y0 = R2, yi

}i=∞
i=1

. The response

to a news shock we empirically identified through 2 is U = {y0 = R∗, yi}i=∞
i=1 .

Assumption 1. The response to a news shock, either fake or true news, under imperfect in-

formation, will be the same before the shock realized. In other words, R1 = R2 = R∗ and

yFi = yTi = yi,∀yF ∈ UF , yT ∈ UT , y ∈ U, i ∈ [0, τ ] will hold.
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This assumption is justified given that under imperfect information, agents cannot discern

the veracity of news; they simply respond identically to observations triggered by either true

or fake news. Thus, it is only under conditions of complete information where the news is

fully informative that agents exhibit differing responses before news realization at time τ . It is

widely recognized that the principle of certainty equivalence applies in the context of first-order

linearized state space models, within which Assumption 1 is unequivocally upheld. Further

support for this assumption is provided in Appendix D.2.2, where I offer several numerical

examples to demonstrate that the aforementioned assumption holds in a state space model under

rational expectations.

Assumption 2. The empirically identified news shock U lies in the medial of the response to

fake news UF and response to true news UT . In other words, yi ∈
[
yFi , y

T
i

]
,∀yF ∈ UF , yT ∈

UT , y ∈ U, i ∈ [τ + 1,∞] will hold. Furthermore, the news shock U is a linear combination of

UF and UT , and yi = αyFi + βyTi holds.

Assumption 2 is also reasonable because the identification process 2 is based on expectation

error and cannot differentiate between UF and UT , as both of them impact the expectation error of

housing prices. Nonetheless, as long as the data generating process (DGP) 1 is a linear equation,

the path subsequent to realization of a shock is entirely described by the coefficient Φ, which

represents a projection from yt−1 to yt. Therefore, the identified path U is essentially a linear

combination of the fake news path UF and the true news path UT , which are both intertwined

within the posterior observation. In Appendix D.5, I apply the news shock identification strategy

2 to mock data generated by a state space model to demonstrate that Assumption 2 is valid.

I now define the identification of fake news as

ŷFi =

yi i ≤ τ

yi −
e′jyτ+1

e′jy
τ
0
yτi−τ−1 i > τ

(7)

where yi ∈ U and yτi represents the response path to a contemporaneous shock directly impacting

the fundamental variable j, as depicted in Equation 4. The fundamental concept here is that the

influence of true news realized at time τ can be counteracted by a contemporaneous negative

shock, leaving behind only the response to fake news, which has no bearing on variable j or

the real economy (subject to a scalar α, which remains unidentified here). This is a logical

supposition, given that the true news shock has been influencing the economy since its realization

at time τ , and as long as the shock is independent and identically distributed (iid) and the entire

system is linear, it operates (producing real effects) as a contemporaneous shock after τ when

it impacts the fundamentals. In Appendices D.3 and D.4, I provide two examples that lend

microfoundation to this offset effect.

The identification method I employ aligns with the logical premise first advanced by Wolf and

McKay (2022), who propose that we can "replace" the underlying state determinant equation (i.e.,
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policy function) with a counterfactual version by solving a system of linear equations. A set of

rescaled fundamental shocks can emulate the old, identified policy function and transform it into

a new function by censoring the old impulse response with an additional series of {Θi,τ}τ=∞
τ=0 ,

generated by a fundamental shock. The paths of other endogenous variables, such as GDP,

investment, and labor supply, are then determined by the censored path yτi , and Wolf and McKay

(2022) provide a rigorous proof supporting this argument. Similarly, Hebden and Winkler (2021)

and Groot et al. (2021) have also used comparable counterfactual experiments in their research

in which the goal was to identify an optimal policy, and they achieved this by solving certain

nonlinear problems.
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Figure 3: IRF to one unit housing price fake news shock at 90% confidence band

Figure 3 exhibits the empirical response to a deceptive housing demand (housing price fake

news) shock. A shock to housing demand arrives (or is announced to households) six quarters

ahead, at time 0, but realizes (has fundamental effect) in quarter 5, with a possibility that the

news lacks any fundamental effect and is merely noise. Before discerning the true nature of

the shock—as either true or fake—agents respond identically to these two shocks, as they are

unable to determine the truth. Hence, Figures 3 and 2 share the same responses before period

6, at which point agents commence their attempts to discern whether the news is true or fake16.

Upon realizing that the news is fake at quarter 5, the housing market boom busts because it lacks

further support. Housing prices and new construction of residential assets decline significantly,

with a 150bps drop in housing prices and a 300bps drop in housing supply. Subsequently, new

16They may be informed directly at time 6 or gradually learn that whether the news is true or fake, which depends
on the information structure, and I provide two examples in the appendix to illustrate two different information
structures.
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residential asset construction enters a negative range, indicating a severe and sustained recession

triggered by the housing market bubble’s bust. Physical investment, initially crowded out due

to the housing market boom, only has a mild increase because the subsequent recession yields

a lower demand for physical capital. In addition to the stagnation in the housing market, a

recession unfolds in the goods market, with output and consumption dropping immediately after

the revelation of the fake news. Due to the scarcity of physical capital during the bust period,

the postrecession recovery is muted. This sluggish recovery unveils the drawbacks of housing

market boom-bust cycles, where physical capital is crowded out during the boom period, and the

resulting scarcity of physical capital leads to a more severe recession during the bust period.
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Figure 4: Historical Decomposition of News shock

In addition to examining the direction and magnitude of the news shock’s effect on housing

prices, it is vital to consider a news shock’s significance. If it does not hold substantial importance

in reality, the preceding discussion around the crowding-out effect may lose relevance. Figure

4 presents the historical decomposition of the news shock and fake news shock’s influence on

various macroeconomic variables. A news shock to housing prices accounts for a moderate

portion of the variance in housing prices and new construction and exerts a modest but not

insignificant effect on physical investment and consumption. To illustrate this significance, I

opted for historical variance decomposition whereby the variables can be explained by the news

shock as a measure of the news shock’s influence. Approximately 50% of the variance in housing

prices in the data is explained by fake news, and fake news can also explain 30% of the variation

of housing supply. However, only 20% of the variation in physical investment originates from

the fake news shock, although the number is not negligible. Conversely, the explanatory power

attenuates to 14% for stock prices, signaling a milder influence than in the housing and capital

17



markets. These suggest that fake news about housing prices explains a significant portion of the

boom-bust cycles in the housing market and the capital market due to the crowding-out effect.

Nevertheless, based on Sims (2016), the share of variance does not offer a reliable indicator of

the relative importance of news shocks. Thus, I also use Figure 5 to probe the significance of

news shocks in reality. Figure 5 displays how the macroeconomy grew during the boom-bust

period of the housing market and the extent to which a news shock can explain it by calculating

the detrended accumulated growth. The news shock in Figures 5a and 5b initially increases

housing prices, but the housing price drops further than is explained by the news shock in the bust

period. These divergences imply that the deception generated the news may yield a bust when

households realized the truth and that fake news indeed explains an important and significant

share of the housing market bubble preceding the Great Recession. Furthermore, in both 5a and

5b, we observe that the crowding-out effect is significant, as physical investment substantially

declines among the housing market boom.
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(a) Historical Decomposition before Great Recession
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(b) Historical Decomposition during housing market bust in early 90s

Figure 5: Historical Decomposition of News shock spanning two housing market booms
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3 Crowding-out effect of overbuilding: Insights from a simple
model

Optimistic expectations regarding future housing prices engenders a surge in household demand

for real estate, inducing a boom in the housing market characterized by inflated housing prices

and overbuilding. In a context where supply is semi-inelastic, changes on the demand side will

not necessarily lead to substantial overbuilding. Conversely, if the supply function possesses

sufficient elasticity, a minor demand boom could spur significant overbuilding. The shapes of the

supply and demand functions determine the magnitude of overbuilding and, by extension, the

degree of crowding in physical capital. This is due to the underlying mechanism through which

the crowding-out effect operates: the general equilibrium. Hence, it necessitates the synergy

of both supply and demand functions to analyze the crowding-out effect. In this section, I first

introduce a simplified Bewley-Huggett-Aiyagari model operating within an incomplete market

framework. Subsequently, I utilize this model to demonstrate that overbuilding, influenced by

intratemporal substitution, liquidity, precautionary saving, and wealth inequality, leads to the

crowding-out effect.

3.1 A simple Bewley-Huggett-Aiyagari model

This framework is grounded in a standard Aiyagari-Bewley-Huggett model wherein households

employ wage income and asset returns to meet their consumption and real estate demands. The

durable good, in this case housing, is produced by real estate companies in a competitive market

utilizing land, capital, and labor. Similarly, consumption are produced in a competitive market

with capital and labor as inputs.

It is a standard Aiyagari-Bewley-Huggett model where households use wage income and

asset returns to fulfill their demand for consumption and real estate. The durable good, housing,

is produced by real estate companies in a complete market with land, capital and labor. Similarly,

the consumption is produced in a complete market with capital and labor.

For simplicity, I assume that household i exogenously provides an inelastic labor supply of 1

unit to solve the problem

max
cit,h

i
t,a

i
t

∞∑
t=0

βtU i
(
cit, h

i
t

)
(8)

s.t.

cit + ait + pHt h
i
t = Rta

i
t−1 + wtε

i
t +
(
1− δH

)
pHt h

i
t−1 + Tt (9)

−ait ≤ γpHt h
i
t (10)

where Equation 9 is the budget constraint and Equation 10 is the collateral constraint. ait could

either be positive or negative, but in aggregate it is positive because the supply of capital is used

to produce housing, consumption and physical capital. wt is the real wage, and the household
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earns productivity-weighted wage income from which εit corresponds to the idiosyncratic income

shock. pHt is the real housing price. hit is the unit of houses hold by household i. Tt is the

lump-sum transfer to the household. For simplicity, I further assume the real interest rate is fixed

at R.17

The production sector is in a complete market where firms produce the nondurable good

via YN,t = AN,tK
α
N,t−1L

1−α
N,t and the durable good via YH,t = AH,tL

θ

HK
ν
H,t−1L

1−ν−θ
H,t . The labor

market is closed by one unit of inelastic labor supply LN,t + LH,t = 1 and households provide

capital by KN,t−1 +KH,t−1 = Kt−1 =
∫
ait−1dGt−1 where Gt−1 is the cumulative distribution

function of households. The nondurable good is used either for consumption or investment

in physical capital, so the goods market cleaning condition YN,t = Kt − (1 − δ)Kt−1 + Ct

holds. Furthermore, real estate companies produce all the increase in residential assets by

YH,t = Ht − (1− δH)Ht−1 where Ht−1 =
∫
hit−1dGt−1.

Proposition 2. Households will adjust their consumption of nondurable goods based on over-

building and precautionary saving. The extent of adjustment is determined by

c̃t = ΦH h̃t︸ ︷︷ ︸
substitution effect

− Φµµ̃t︸︷︷︸
credit effect

+ΦpH

[
1

1− (1− δH) 1
R

FH(H̃t)−
(
1− δH

)
1
R

1− (1− δH) 1
R

FH(H̃t+1)

]
︸ ︷︷ ︸

wealth effect

(11)

− Φcov c̃ovt︸ ︷︷ ︸
precautionary saving effect

where FH (·) is the inverse supply function,

ΦH =

λ
λ−µηc,pH − ηc,pc

ηh,pc − λ
λ−µηh,ph

(12)

Φµ =
µ

λ− µ

ηch

ηh,pc − λ
λ−µηh,ph

(13)

ΦpH =
ηch

ηh,pc − λ
λ−µηh,ph

(14)

Φcov =
ηc

ηh,pc − λ
λ−µηh,ph

β
(
1− δH

)
cov

h

and ηc,pH = uchuh
u2ch−uccuhh

1
c
,ηc,pc = uhhuc

u2ch−uccuhh
1
c
, ηh,pc = uchuc

u2ch−uccuhh
1
h
, ηh,ph = uccuh

u2ch−uccuhh
1
h
, ηch =

ucuh
u2ch−uccuhh

1
ch

, ηc = uc
u2ch−uccuhh

1
c
.

17This is not an overly strong assumption since this could happen in many scenarios. For instance, the nominal
interest rate reaches the ZLB, and the price is fixed. Alternatively, we could have an open economy where the real
interest rate is bounded by the international financial market. In Appendix G.1.1, I show that under a range of
parameters, the real interest rate will not change at t as long as capital and labor do not change.
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Proposition 2 elucidates that any disturbance in the real estate market can propagate to

consumption via four distinct channels: the substitution effect, wealth effect, credit effect, and

precautionary savings effect.18 The directions these four channels take, in terms of how the

housing market boom influences the consumption, is determined by the relative strength of

both intertemporal and intratemporal elasticities of substitution between nondurable and durable

goods and the specific role that housing wealth assumes within the budget constraint and credit

constraint. When overbuilding transpires in a housing market bubble, positive variations in h̃t
and H̃t prompt changes in consumption via substitution and wealth effects. Furthermore, it could

also endogenously affect consumption through credit and precautionary saving effects. This

variation in consumption, engendered by a housing market boom, ultimately impacts physical

investment, thereby exacerbating the recession in the future, as long as the overall effect is

positive.

It merits attention that ηx,py represents the standard Frisch elasticity of variable x with

respect to the relative price of y, serving a crucial role in moderating the impacts of these four

effects. If consumption is more responsive to housing prices than to consumption goods’ prices,

a shift in the holdings of housing will induce a more pronounced effect on consumption, as

manifested in ΦH . Conversely, if households’ holdings of housing respond more substantially to

consumption goods prices (than to housing prices), the elasticity of substitution would dampen

all four channels. This occurs because the consumption of durable housing becomes more stable,

and households do not significantly alter their consumption, suggesting a minor pass-through

from housing to consumption.

3.2 Crowding-out effect of overbuilding

The amplification of the crowding-out effect sparked by overbuilding due to the intratemporal

elasticity of substitution, credit constraints, precautionary saving, and wealth inequality will be

discussed herein. Overbuilding intuitively affects the consumption and crowded-out physical

investment, considering the relationship between consumption and housing as complements

at the aggregate level. Similarly, overbuilding tends to ease collateral constraints, facilitating

households to borrow more to smooth their consumption demand. Additionally, overbuilding

exerts influence on the consumption response via housing prices due to the monotonic increasing

inverse supply function of residential assets, FH (·), in a complete market – more new con-

struction leading to higher housing prices in equilibrium. As the housing price factors into the

budget constraint of the household and influences their income, a rise in housing prices makes

households perceive an increase in wealth, given the dual function of a house as both a utilitarian

good and an asset in the budget constraint. This surge in price, arising from a shift in the supply

function (a demand shock), implies that overbuilding aligns with house price inflation via the
18Berger et al. (2018) only discussed two of them meticulously and did not focus on the credit effect and

precautionary saving effect. Additionally, their goal of decomposition is related to analyzing the inequality problem
caused by house price inflation.
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supply side; otherwise, an inelastic supply function will not generate any overbuilding from a

demand shock.

By aggregating the consumption decision of households from Equation 11 and integrating

the first-order conditions (FOCs) in supply sectors, a relationship between overbuilding and

physical investment can be obtained, as outlined in Proposition 3.

Proposition 3. The aggregate investment is driven by overbuilding and precautionary saving

following

IĨt = −
{(

ΦH +
ν

α
pHH

)∫
h̃t
i
dGi − Φµ

∫
µ̃itdGi (15)

+ ΦpH

[
1

1− (1− δH) 1
R

FH(H̃t)−
(
1− δH

)
1
R

1− (1− δH) 1
R

EtFH(H̃t+1)

]

−Φi
cov

∫
c̃ovitdGi +

ν

α
YHp

HFH(H̃t)

}

The overbuilding, H̃t =
∫
h̃t
i
dGi > 0, will crowd out physical investment as long as the

substitution effect ΦH and wealth effect ΦpH are not negative enough and Φµ is not positive

enough.

Equation 15 reveals that overbuilding results in diminished physical investment and subse-

quently lower physical capital through distinct mechanisms on the demand and supply sides, at

least within a specific parameter range. The term Φx pertains to the influence of the pass-through

from housing to the consumption, whereas the term ν
α

in 15 is connected to the supply-side effect.

The following discussion will explore in detail how the relative intratemporal elasticity of substi-

tution, credit constraint, precautionary savings, and wealth inequality impact the crowding-out

effect instigated by overbuilding.

3.2.1 Intratemporal elasticity of substitution

Intertemporal substitution, extensively explored in relation to the Euler equation and monetary

policy, stands in contrast to intratemporal substitution between housing and consumption, which

remains underexplored both theoretically and empirically. In this section, I argue that intratem-

poral substitution significantly influences household decision-making processes, especially in

the context of the crowding-out effect created by overbuilding. Empirical studies in the housing

market suggest that intratemporal substitution holds more significance and potency than intertem-

poral substitution19, as households, being primarily myopic or financially constrained, often

neglect or simply cannot afford to consider future consumption in their present-day decisions. By

analyzing the coefficients of the crowding-out effect as delineated in Proposition 11, Corollary 1

19Khorunzhina (2021) conducted this vital empirical work.
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concludes that the relative intratemporal substitution can theoretically amplify the crowding-out

effect across the demand side of the housing market.

First, I define the intertemporal and intratemporal elasticity of substitution below:

Definition 2. The intratemporal elasticity of substitution is

IAS = −
∂lnh

c

∂lnUh
Uc

(16)

and the intertemporal elasticity of substitution to consumption bundle is

IES = −UBB
UB

Then, based on the definition, I obtain the following corollary.

Corollary 1. Ceteris paribus, households with a higher intratemporal elasticity of substitution

relative to their intertemporal elasticity of substitution and with a CRRA utility function, will

crowd out less investment through the substitution and wealth effects.

It is easy to understand Corollary 1 that consumption and housing services are both normal

goods, and if their degree of substitution is high , the crowding-out effect will be further muted

since an increase in housing consumption would lead to a corresponding decrease or smaller

increase in consumption. The intratemporal elasticity of substitution gauges the extent to which

an increase in housing can be substituted by an increase in consumption for a given utility level

within a specific period.20 On the other hand, the intertemporal elasticity of substitution quantifies

the inclination to substitute the overall consumption bundle over different periods. If IAS > IES

holds, households are more likely to adjust their holding of housing and consumption within

a given period, rather than across different periods. A relatively larger intratemporal elasticity

of substitution implies a lower increase in consumption in response to overbuilding within a

given period, as these goods become more substitutable than complementary. The potency of

intratemporal substitution is such that it directly influences marginal utility, bypassing the budget

constraint; hence, any other elements in the economy that affects the utility of residential assets

will doubtless alter the crowding-out effect.

Proposition 4. When the housing supply is fixed, the initial housing distribution over the

dynamic path is exogenous and
(

1−β
β

αA

) 1
α−1

> K
L
>
(
δ
αA

) 1
α−1 holds, the substitution effect

ΦH and wealth effect ΦpH will decrease as the relative intratemporal elasticity of substitution

increases. Furthermore, when the aggregate Khun-Tucker multiplier is not too large, the credit

effect Φµ will increase in the relative intratemporal elasticity of substitution.

20It is intuitive to focus on Uch, which is closely related to the complementarity between housing and consumption.
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Proposition 4 shows that under certain conditions,21 the relative intratemporal elasticity

of substitution will have a clear impact on the substitution, credit and wealth effects. In the

subsequent analysis, I dispense with these conditions and quantitatively solve the GE problem

to provide a more detailed analysis of the effect of the relative intratemporal elasticity of

substitution.

I solve model 8 with unit intratemporal elasticity such that IAS = 1 and change the intertem-

poral elasticity from 0.67 to 0.5, effectively increasing the relative intratemporal elasticity. As

depicted in Figure 6a, increasing the relative intratemporal elasticity results in a contraction

of the substitution effect. Theoretically, a preference shock increasing the relative intratempo-

ral elasticity of substitution compared to the intertemporal elasticity will reduce the response

of consumption to a given level of overbuilding, subsequently leading to a smaller extent of

crowded-out investment. This outcome can be attributed to the abated complementarity between

consumption and housing due to the enhanced substitution. Additionally, a higher propensity for

substitution can alleviate the collateral constraint, given the reduced demand for consumption,

thereby causing fewer households to remain financially constrained in steady state. For a mathe-

matical elucidation of the above argument, let us consider two economies, a and b. In these two

economies, the relative intratemporal elasticity of substitution satisfies IASa
IESc,a

< IASb
IESc,b

. Suppose

that an unexpected tax rebate is given to households in each of these economies, triggering the

same increase in consumption, ∆Ca = ∆Cb = 0.5. Given that the intratemporal elasticity in

economy a is smaller than that in b, households in a will increase their durable consumption

by more, say, ∆Ha = 0.5 > ∆Hb = 0.3. This increased residential asset holding eases the

collateral constraint, with the extent of relief being proportionate to the change in residential

assets. Therefore, the Karush-Kuhn-Tucker multiplier in Equation 10 yields ∆µa < ∆µb < 0,

implying Φa
µ > Φb

µ > 0 in Equation 11 as Φi
µ = −∆Ci

∆µi
. This trend is represented in Figure 6b,

where the credit constraint progressively expands.

In addition to substitution and credit effects, overbuilding also influences pass-through

consumption responses through the inverse supply function FH (·). Note that residential assets

not only act as consumable goods within a utility function but also act as a type of asset within

the budget constraint. A surge in housing prices, often stimulated by overbuilding, augments

household liquidity as long as households previously hold some amount of housing. The resulting

wealth effect is amplified when a unit of housing, in terms of value, translates to a higher utility

under a diminished intratemporal elasticity of substitution. Intratemporal decisions between

housing and consumption, driven by this wealth effect, adhere to equation Uh,t
Uc,t

= f
(
p+t , p

−
t+1

)
,

which is rather intuitive. Consider a scenario where households buy one additional unit of

housing at time t and obtain Uh,t units of utility. Alternatively, these households could expend

equivalent money on consumption, obtaining Uc,tf
(
p+t , p

−
t+1

)
units of additional utility. Here,

21It is difficult to implement two state variable Bewley-Huggett-Aiyagari model under theory based on Von-
Neumann algebra inStokey (1989) because the topology is too complicated. Thus, these conditions help to direct
the dimension of distribution.
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the unit of consumption is scaled against the relative housing price. Introducing an equivalent

jump in housing prices ∆pHa,t = ∆pHb,t > 0 in both economies a and b while holding housing

fixed triggers a spike in consumption, leading to a positive ΦpH in Equation 11. Such a jump

in consumption ∆Ct > 0 aligns with the reduced marginal utility of consumption ∆Uc,t < 0

and an increased demand for durable goods (owing to their complementarity), resulting in

an increased marginal utility of durable goods ∆Uh,t > 0. A larger relative intratemporal

elasticity of substitution permits greater disparities between the marginal utilities of housing

and consumption. Consequently, an uptick in consumption can be sufficient to sustain a given

variation (∆f (pt, pt+1) > 0) in relative marginal utility, which means that a one-unit increase

in housing prices induces a smaller increase in consumption in the current period. This further

amplifies the crowding-out effect via wealth effects and the pass-through from durable to

consumption. Figure 6c exhibits the decreased influence of the wealth channel on the crowding-

out effect as relative intratemporal elasticity increases, marking one unit of housing less important

(it can more easily be replaced by consumption). While this section eschews a quantitative

introduction of aggregate shocks into our model and does not address the varying magnitude of

the precautionary saving effect, it remains evident that a higher relative intratemporal elasticity

of substitution encourages a diminished precautionary saving effect because the household

prefers balanced consumption portfolios within a period to portfolios over multiple periods. In

conclusion, overbuilding impacts the crowding-out effect through four channels, with three being

significantly influenced by the relative intratemporal elasticity of substitution.

3.2.2 Credit constraint and liquidity

Overbuilding and housing market booms influence household consumption, a shift that is pri-

marily attributable to the substitution effect. Additionally, in an incomplete market, where

households cannot fully insure themselves against idiosyncratic shocks via financial markets,

households’ consumption patterns may be bounded by market constraints, limiting their bor-

rowing capabilities to address adverse shocks. These credit constraints give rise to liquidity

challenges. Consequently, certain households occasionally face constraints, impeding them from

satisfying their consumption demands, even if they are able to repay their future borrowing.

Overbuilding introduces a higher volume of assets that households can employ as collateral, ame-

liorating the loss introduced by the credit constraints. In Figure 7a, the extent of financial friction

decreases, attributed to an increase in the proportion of housing value that can be leveraged for

borrowing—from 0.5 to 0.8. This verifies the assertion that stricter collateral constraints augment

the substitution effect, as the marginal utility of housing is higher in a steady-state scenario.

Proposition 5. When the housing supply is fixed, the initial housing distribution over dynamic

path is exogenous and
(

1−β
β

αA

) 1
α−1

> K
L
>
(
δ
αA

) 1
α−1 holds, the substitution effect ΦH and wealth

effect ΦpH will decrease as the collateral constraint slackens. Furthermore, when the aggregate
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Figure 6: Elasticity of Substitution

Khun-Tucker multiplier is not too large, the credit effect Φµ will increase as collateral constraint

slackens.

Moreover, a marginal relaxation of the binding collateral constraint is associated with a

reduced K-T multiplier, as indicated by ∆µ < 0 in Equation 11. In contrast, a tighter constraint

corresponds to a diminished consumption response, Φµ, which in turn leads to a smaller crowding-

out effect. To clarify the credit effect, consider an assumption where an unanticipated tax rebate

leads to equivalent increases in consumption in economies a and b, denoted as ∆Ca,t = ∆Cb,t.

If the collateral constraint, γ, in economy a is more stringent than in economy b, then γa < γb

will hold both in Equation 10 and in Figure 7. A stricter financial constraint reveals a more

pronounced K-T multiplier response. Thus, the absolute change in the multiplier in economy

a surpasses that in economy b (∆µa < ∆µb < 0). This suggests that under a tight financial

constraint, a unit change in the marginal value of housing is less effective. The reason is that

under such circumstances, a unit change in marginal value is comparatively "cheaper" than its

steady-state counterpart. Figure 6b explicitly demonstrates that a credit crunch (a positive µ̃t),
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triggered by overbuilding, leads to a less pronounced reduction in consumption (or a greater

crowding out of investment) when financial friction is more substantial.

In contrast to the credit effect, financial friction operates inversely concerning the wealth

effect and substitution effect. Mathematically, a larger financial friction leads to an increased

K-T multiplier and a larger µ, resulting in a more pronounced wealth effect, as depicted in Figure

7c. The underlying mechanism mirrors that of substitution, given that both housing services

and their pricing play the same role within the collateral constraint 10. Their influence on the

pass-through is consistent. All these results hold theoretically and are derived under certain

stringent conditions, as expressed in Proposition 5.
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Figure 7: Financial friction

3.2.3 Precautionary saving and wealth inequality

Households tend to exhibit less consumption than in the absence of idiosyncratic shocks or

if they possessed perfect insurance against such shocks. This propensity toward saving as a

27



safeguard against unforeseen idiosyncratic shocks is referred to as the precautionary saving

motive. The final term in Equation 15 elucidates that precautionary saving decreases consumption,

as households allocate an additional amount Φcov c̃ovt to savings rather than expenditure in the

face of income uncertainties.

Beyond the four previously discussed effects – the substitution, credit, wealth, and precau-

tionary saving effects – overbuilding can magnify the crowding-out effect over the business cycle.

It is a recognized fact that idiosyncratic shocks are countercyclical, whereas overbuilding tends

to be procyclical. Consequently, during periods of overbuilding, households exhibit reduced

precautionary behavior due to improved aggregate economic conditions and diminished severe

idiosyncratic shocks. A booming economy combined with lower idiosyncratic shock variability

emboldens households, leading them to increase consumption and reduce savings. The term c̃ovt

in Equation 15 will decrease, indicating more consumption and less savings during overbuilding

and economic upturns. Nevertheless, this amplification effect is beyond the scope of my current

numerical experimentation and remains a subject for future research.

Furthermore, the wealth distribution can potentially influence the crowding-out effect initiated

by overbuilding via the aggregation process. Given that increased holdings of housing are

financed through liquid assets and wage income, the most significant per capita jump in housing

asset holdings typically comes from households possessing abundant liquid assets and earning

high incomes. Aggregating the consumption decisions across households, as presented in

Equation 15, reveals the significance of the wealth distribution, particularly with respect to the

distribution of coefficients, subsequently affecting the aggregate crowding-out effect. Figure 8a

delineates the distribution changes in housing holdings when housing prices decrease. Wealthy

households with significant liquid assets are the primary purchasers of additional housing units,

subsequently decreasing the physical investment, as illustrated in Figure 8b. Although the

cohort mass is numerically small, the distribution of wealth is significantly left-skewed, with

the skewness being evident in Figures 9a (for residential assets) and 9b (for effective liquid

assets). The most wealth is concentrated among a minority at the top tier, and this skewed wealth

distribution accentuates the overbuilding-induced crowding-out effect, as represented by the

term
∫
h̃t
i
dGi in Equation 15. Additionally, with the distribution of the MPC being right-skewed

(Figure 8c), the standard general equilibrium effect for hand-to-mouth households remains valid,

especially in the monetary policy pass-through context. This right-skewed MPC also intensifies

the crowding-out effect, albeit through the term
∫
µ̃itdGi in Equation 15. Figure 8d illustrates the

wealth distribution effect of a demand-driven boom, which I argued in Corollary 2 arises from

anticipated housing price inflation, in contrast to the supply-driven booms represented in Figures

8a and 8b.

28



(a) (b)

(c) (d)

Figure 8: Wealth Distribution

3.2.4 Optimistic expectations and overbuilding

The previous discussions have primarily centered on the crowding-out effect generated by over-

building, examining the various mechanisms through which this effect manifests, contingent on

the assumption of the occurrence of overbuilding. In this section, I contend that the presumption

of overbuilding is not strong; indeed, an optimistic expectation regarding the future housing

market can create overbuilding. When households have positive expectations regarding future

housing prices, they tend to augment their current real estate holdings. This behavior parallels

the consumption adjustments driven by the intertemporal New Keynesian framework. Corollary

2 shows that an upswing in the anticipated housing price at time T + 1 induces a marginal surge

of −
[
β
(
1− δH

)]T
ΠT
s=1

λt+s
λt+s−µt+sλt+T+1/u

′′
hi units in housing demand. If such expectations are

fueled by misplaced optimism or unfounded news, the ensuing rise in construction may well

translate to overbuilding. This is because such expansion is not rooted in foundational shifts but
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Figure 9: Lorenz curve

is instead supported by an illusion. Once this illusion dissipates, the crowding-out effect could

catalyze a recession, given the lack of physical capital that was misdirected during the housing

market boom.

Corollary 2. Ceteris paribus, a positive expectation about the housing price change at time

T + 1 will induce a jump in demand for housing at time t. The response extends as follows:

h̃it

∣∣∣
ht+i,µt+i,λt+i,,i∈[1,T ]

= ζ itdp
H
t+T+1 (17)

where ζ it = − 1
u′′
hi
Et
[
β
(
1− δH

)]T
ΠT
s=1

λt+s
λt+s−µt+sλt+T+1

4 Crowding-out effect of overbuilding: Full-fledged model

In the preceding section, I utilized a simple model to demonstrate that expectations of a future

housing market boom can motivate households to augment their consumption of durable goods.

This, in turn, can crowd out physical investment. This crowding-out effect is influenced by

several factors, namely the relative intratemporal elasticity of substitution, credit constraints, and

the distribution of wealth. In this section, I employ a full-fledged model to provide a quantitative

analysis of the crowding-out effect. By aligning this model with empirical data, I intend to

elucidate how news regarding the future can generate a boom-bust cycle in the housing market.

Particularly, if such news proves to be inaccurate and households only realize this after a certain

period, the ensuing boom—supported by misinformation rather than economic fundamentals—

will induce overbuilding. This misallocation can subsequently lead to significant declines in both

output and consumption during the bust phase. To proceed, I first describe the model adopted for

this quantitative analysis. Next, calibration and the full-information Bayesian method will be

used to integrate the model with empirical data. Finally, I highlight the severe recession resulting

from overbuilding, as evidenced through certain IRFs.
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4.1 Model Setting

4.1.1 Household

Assume that the household22 holds houses ht−1 and a liquid asset bt−1 at time t, which he takes

from the previous period. He chooses consumption ct, labor supply lt, houses ht and liquid asset

holding bt at time t to solve the optimization problem

V (ht−1, bt−1, εt−1) = max
c,l,b′,h′

U(ct, ht, lt) + βEV (ht, bt, εt)

s.t.ct +Qtbt + pht
[
ht − (1− δh)ht−1

]
= RtQt−1bt−1 + (1− τ)wtltεt +Πh

t

− phtC (ht, ht−1) + Tt (18)

−Qtbt ≤ γpht ht (19)

where pht is the relative price of a housing unit at time t. Rt is the gross real return of the liquid

asset, which follows Rt =
Qt(1−δ)+rt

Qt−1
. C (ht, ht−1) is the adjustment cost function when the

household wants to adjust its holdings of housing. γ is the parameter governing the slackness of

the collateral constraint. δh is the depreciation rate. τ is wage income. Πh
t is the profit rebated

from construction companies. T is the lump-sum tax transfer payed by the government. εt is

the idiosyncratic income shock that follows a logarithmic AR1 process with coefficient ρε and

standard derivation σε.

The adjustment function follows the canonical form

C (ht, ht−1) =
κ1
κ2

(ht−1 + κ0)

∣∣∣∣ht − ht−1

ht−1 + κ0

∣∣∣∣κ2
The utility function follows the CRRA form23

U(ct, ht, lt) =

(
cϕt h

1−ϕ
t

)1−σ
1− σ

+ κ
l1+ψt

1 + ψ

4.1.2 Firm

There are two types of firms, construction firms that produce housing and the nondurable goods

producers. Both of these two types of producers operate in a complete market, but because the

construction firms also use exogenous land supply as an input to construct housing, they earn a

nonzero profit, which is ultimately repaid to their shareholder, the household.

22Here, for simplicity, I omit the index for a specific household i.
23Piazzesi et al. (2007) use CEX data suggest that intratemporal elasticity of substitution is close to 1. In other

words the utility function form of durable and consumption is close to standard Cobb-Douglas case.
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Nondurable goods producers use

YN,t = An,tK
α
n,tL

1−α
n,t (20)

to maximize profit with the costs coming from the real rental rate of capital Kn and the related

wage payment to labor Ln .

Similarly, durable goods (housing) producers use

YH,t = Ah,tL
θ
t K

ν
h,tL

ι
h,t (21)

to maximize profit with the cost coming from the real rental rate of capital Kh,t and the related

wage payment to labor Lh,t. The L θ
t in the production function is the exogenous land supply and

follows L θ
t = LAL,t, and the new constructions are homogeneous to each production factor;

hence, the share of input satisfies θ + ν + ι = 1.

4.1.3 Capital Producer

The capital producer uses final nondurable goods YN to produce capital following the maximiza-

tion problem

maxEt

∞∑
τ=t

βτ−tΛt,t+τ {QτIτηI,t − f (Iτ , Iτ−1) IτηI,t − Iτ}

s.t. f (Iτ , Iτ−1) =
ψI
2

(
Iτ
Iτ−1

− 1

)2

By solving above optimization problem, I obtain the capital price as a convex function of

investment, which is shown below

QtδI,t = 1 +
ψI
2

(
It
It−1

− 1

)2

ηI,t + ψI

(
It
It−1

− 1

)
It
It−1

ηI,t−

EtβΛt,t+1ψI

(
It+1

It
− 1

)(
It+1

It

)2

(22)

where ηI,t is the marginal efficiency of the investment shock, following Justiniano et al. (2011).

4.1.4 Market cleaning

Capital is supplied by households with their gross net liquid assets, and labor is supplied in

effective form

Kt =

∫
btdGt = Kn,t +Kh,t
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Lt = Lh,t + Ln,t =

∫
εtldGt

Ht =

∫
htdGt

The goods market cleaning condition is

Ct + It + f (It, It−1) ItηI,t + pht

∫
C(ht, ht−1)dGt = YN,t

where Kt = (1− δ)Kt−1 + ηI,tIt and Gt is the cumulative distribution function.

Similarly, the housing market cleaning condition is

[
Ht − (1− δh)Ht

]
= YH,t

The return on gross liquid assets bt comes from two components: capital return from firms rt
and capital gain Qt(1−δ)

Qt−1
.

Finally, the government closes the economy by T = τwL and Πh
t = pht YH,t−wtLh,t− (rt−

1 + δ)Kh,t.

4.1.5 Shocks

The model contains three types of shock: a contemporaneous unexpected shock, news shock

and noise shock. There are two fundamental shocks to the TFP of the two production functions

20 and 21. These two shocks ait follow the standard logarithmic AR(1) process log(ait) =

ρialog(a
i
t−1) + εa

i

t where i ∈ {h, n}. Thus, the TFPs of these two production functions follow

An,t = antAn and Ah,t = ahtAh. I introduce a preference shock Φϕ
t to the preference ϕ in the

utility function on the demand side, cooperating with a land supply shock ΦL
t and to determine

the housing market.

Moreover, to incorporate noise and news into the model, I assume that the household can

obtain news related to the shocks up to 8 periods before the shocks realize, and I define them in

companion form in Equation 93. However, the agents cannot perfectly observe these shocks but

do so in conjunction with a noisy observation shock to Φ̃i
t in Equation 95.24 I relegate details

about the news and noise shocks to Appendix H.7.1, in which I introduce the news and noise

shock following Chahrour and Jurado (2018), who introduced the news and noise representation

to overcome the observational equivalence problem in previous literature such as Schmitt-Grohé

and Uribe (2012), Barsky and Sims (2012) and Blanchard et al. (2013).

24I define the news and noise shocks following the suggestion made by Chahrour and Jurado (2018) because this
form does not suffer from the observational equivalence problem.
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4.2 Calibration

4.2.1 Parameters

Most of the parameters on the production side come from the literature and are standard and

robust. These parameters have been relegated to Appendix H.1 and summarized in Table 9. I

use the discount factor, disutility to labor supply, and three parameters on the production side

to match the gross quarterly real interest rate of 1.015 , labor supply of 1, physical investment-

to-GDP ratio of 0.13 and new construction-to-GDP ratio of 0.05. The proportion of physical

investment to GDP is estimated from private nonresidential fixed investment relative to GDP.

Similarly, the ratio of new construction to GDP is computed based on private residential fixed

investment over GDP. The parameters in the adjustment cost function are in line with Kaplan

et al. (2018) and Auclert et al. (2021). The intertemporal elasticity of substitution and preference

between housing and consumption are borrowed from Kaplan et al. (2020). The AR1 coefficient

and standard derivation of the idiosyncratic shock follow the estimation by McKay et al. (2016).

All the values of corresponding parameters are summarized in Table 1.

Table 1: Key Parameter Values

Parameter Value Description

β 0.9749 Discount factor

τ 0.20 Labor income tax

κ -1.28 Disutility to supply labor

γ 0.8 Slackness of collateral constraint

κ0 0.25 Adjustment cost silent set

κ1 1.3 Adjustment cost slope

κ2 2 Adjustment cost curvature

σ 2 Inverse of intertemporal elasticity of substitution

ϕ 0.88 Preference between housing and consumption

ρε 0.966 AR1 coefficient of income shock

σε 0.25 SD of income shock

4.2.2 Data to Model: Moment Matching

Although I do not specifically match the moments in the distribution, my model has considerable

merit in replicating the moments extracted from data. Table 2 shows that my model has some

natural ability to reflect reality when I compare the data estimated by Kaplan et al. (2014) and

Kaplan et al. (2018) and the moments calculated from my model.
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Table 2: Distribution Moments

Description Data Model

Poor Hand-to-Mouth Household 0.121 0.1102

Wealthy Hand-to-Mouth Household 0.192 0.2059

Top 10 percent share of Liquid asset 0.8 0.5

Top 10 percent share of Illiquid asset 0.7 0.3

To build a bridge between the model and data, I use full information Bayesian method to

estimate the parameters that pertain to the dynamic and business cycle. Particularly, I resolve

parameters in 7 shock series from 7 variables. For similarity, I assume that the covariance

matrix of shocks is a diagonal matrix hence that all the shocks are independent and there are

no parameters related to covariance terms in the estimation. All details about the estimation are

relegated to Appendix H.2.2.2.

Table 3: Real Business Cycle Moments

Moments Description Model Data

σY Standard deviation of output 0.04 0.02
σ
pH

σY
Relative standard deviation between housing price and output 1.57 1.46

σI
σY

Relative standard deviation between physical investment and output 3.92 3.19
σ
IH

σY
Relative standard deviation between new construction and output 12.42 8.88

corr(pH , IH) Correlation between real estate price and new construction 0.42 0.23

corr(I, IH) Correlation between physical investment and new construction -0.15 -0.28

corr(I, Y ) Correlation between physical investment and output 0.06 0.19

corr(I,Q) Correlation between physical investment and capital price 0.40 0.32

The moments in the data in Table 3 are calculated by detrending the trend from quarterly

time series via the HP filter, and for the purpose of comparability to the filtered data, I also

follow the method proposed by Uhlig et al. (1995) and Ravn and Uhlig (2002) to calculate the

model moments in the frequency domain with some algebraic modifications that are discussed in

Appendix H.2.1. Table 3 summarizes the primary moments related to the housing market and

physical capital investment on which I focus in this paper. The results show that the model is in

line with reality.
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4.3 Quantitative Analysis

4.3.1 Overbuilding and boom-bust cycle: News in the future and inefficiency of imperfect
information

Upon the realization of a contemporaneous preference shock, households tend to reduce their

consumption in favor of increased durable consumption, particularly housing services. Such

a preference shift generates an increase in housing prices, owing to a rightward shift of the

demand curve and a housing market boom, as depicted in Figure 10a. Interestingly, a one-unit

preference shock translates to a 0.6 perception of the shock, because of the imperfect information.

Consequently, they increase their consumption of houses, leading to a jump in construction and

housing prices.
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Figure 10: Contemporaneous and News shock

However, if households know this shock in advance, they will also respond to this shock in

advance. They increase their holdings of houses instantaneously, leading to a jump in housing

prices. This overbuilding in real estate can displace physical investments through general

equilibrium effects. Moreover, households might also increase their overall consumption, either

due to higher wage income or the ability to secure more loans from financial institutions, if the

wealth effect is strong enough. This has the potential to exacerbate the crowding-out effect,

especially as consumption becomes a part of the goods market equilibrium condition. However,

in Figure 10b, the estimation result indicates that an impending preference shock in advance

corresponds to a small wealth effect. Concurrently, while their consumption does not increase

significantly, the other demand shocks, such as the credit shock or depreciation shock, may lead

to a significant jump in consumption.

In scenarios where by illusions rather than fundamental adjustments, the inefficiencies

stemming from imperfect information can incur welfare losses. Figure 11 illustrates the welfare

loss from such imperfect information. The right column delineates the investment responses and

welfare variation following a shock to preferences. Observing the diminishing contributions of

consumption to overall utility, households perceive this shift as the dashed line in the top row.
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Figure 11: Welfare Loss in Imperfect Information

Given the higher utility derived from housing services, households increase their consumption

in this sector, resulting in a rise in aggregate welfare. In the absence of any response to the

shock, they will lose some welfare with respect to the situation when they react, as the reaction

is derived from the optimization problem. However, an increase in welfare emerges due to

distributional effects and the presence of hand-to-mouth households.

Opposite to the realized preference shock, the left column of Figure 11 illustrates the

responses to a noise shock. Misinterpreting this as a preference shock, households increase their

investment in residential assets. This misguided response inflicts a welfare loss on households, as

represented by the solid line at the bottom. In the absence of reactions to this noise shock, welfare

would remain unchanged, as nothing fundamentally happens. These experiments corroborate

the inefficiencies associated with imperfect information, whereby individuals can be misled into

proceeding housing market booms. The experiments elucidate how fake news can potentially

trigger further losses in output and consumption due to crowded-out physical capital.

4.3.2 Overbuilding and Boom-bust Cycle: Fake News

Upon receiving a noisy shock, households react based on the same dynamics they would

attribute to a fundamental change. This behavior stems from the existence of information

frictions. Households, in essence, do not possess the capability to discern the precise magnitude

of the shock. Instead, they response based on a signal that might be contaminated by noise.

Consequently, their actions are anchored to their perceptions or beliefs, rather than the underlying

factual shock. In scenarios where households anticipate a future housing market boom, they
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increase their housing holdings and decrease their savings. This can be detrimental in the

long run, especially if their beliefs are misguided and the perceived housing boom is a fantasy.

Upon this realization, households recognize that they must urgently invest more resources in

physical capital, having previously shifted their focus to real estate. This increase in demand for

physical capital results in a decline in consumption, culminating in a significant welfare loss.

Additionally, the role of real estate, as a form of wealth (which households typically leverage

to secure loans), contributes to the welfare loss during a housing market downturn. As house

prices drop, consumption, especially of lower-income households, decline significantly and the

financial market disruption exacerbates welfare losses.
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Figure 12: Fake news shock

Figure 12 compares the impulse responses to a fake-news preference shock, in scenarios

with and without preexisting crowded-out physical capital, and demonstrates the large output

and welfare loss resulting from the crowding-out effect. The blue solid lines depict responses

to a contemporaneous noise shock, Φ̃ϕ
t , with respect to production, consumption, physical

investment, new construction, and real housing prices. The black solid lines represent the

responses to the noisy news shock, Φ̃ϕ
t+8, that is disclosed to households eight periods ahead. At

the announcement of a potential economic boom in the future, households increase their real

estate investments, inducing an immediate housing market boom. This housing market boom

spurs a mild response in consumption, because of a smaller wealth effect of the preference shock,

rather than credit shock that is argued in Mian et al. (2013). As the forecasted boom materializes

two years later (in the ninth period), households gradually become aware of the truth, thereby
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increasing their savings because of the high real interest rate originating from the deficit created

by earlier crowding out. This is accompanied by a housing market downturn, with a 3.5% drop

in housing prices. Conversely, in scenarios without prior crowded-out physical capital, economic

responses are considerably more tempered, characterized by lesser output losses and milder

market fluctuations. The drop in housing prices and consumption are approximately one-third of

their counterparts in the crowded-out case. This difference in impulse response demonstrates the

crowding-out effect within housing market boom-bust cycles.

In period 8, households alter their perceptions of the fundamental economic framework,

as this is the point when the shock takes effect, adjusting their understanding of foundational

economic shifts. Households reduce their nondurable consumption at this time, driven by the

dominant substitution effect overtaking the wealth effect. Notably, this dominant substitution

effect might not be as significant under a non-preference shock, such as a credit crunch shock.

Under a preference shock, households derive greater utility from substituting housing with

non-durable consumption. However, given the illiquidity of real estate, they choose to invest

more in residential assets, consequently diminishing their marginal utility for consumption. This

decrease in marginal utility amplifies households’ propensity to defer consumption to the future,

leading to an increase in the stochastic discount factor. The increased stochastic discount factor,

in turn, boosts the price of capital, rendering savings in physical capital more appealing to

households. This dynamic explains the observed surge in physical investment.

4.3.3 Idiosyncratic income shock, financial friction, relative intratemporal elasticity of
substitution

In this section, the focus is on elucidating how the crowding-out effect is influenced by fac-

tors in the economy, such as idiosyncratic income shocks, financial frictions, and the relative

intratemporal elasticity of substitution. To undertake this investigation, I maintain a constant

expected jump in housing prices while varying relevant parameters. A modification of the

relative intratemporal elasticity of substitution is illustrated by the blue dashed line in Figure 13.

Specifically, a reduction in this relative elasticity (from IAS
IES

= 2 to 1.5) results in a large drop

in physical investment. This diminished elasticity implies that households exhibit lesser utility

substitution between consumption and housing (suggesting greater complementarity), yielding a

smaller decline in consumption. Consequently, through general equilibrium effects, investment

in physical capital decreases further.

The red dashed line in Figure 13 depicts the response under a tight credit constraint, which

implies an important role of wealth inequality. As shown in Section 3.2.2, if we do not consider

the wealth distribution (i.e.,
∫
h̃t
i
dGi and

∫
µ̃itdGi in Equation 15), a tighter financial constraint

will result in a more severe crowding-out problem because real estate is more valuable now.

However, as shown in Section 3.2.3, households cannot increase their consumption and housing

service as much as they want to because of financial constraints and wealth inequality. The
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Figure 13: Crowded-out effect comparison

larger h̃t
i

can only be realized in a smaller dGi, and Figure 13 shows that this inequality channel

dominates other channels. Physical capital is crowded out less than in baseline model because

there are more overwhelmed households that cannot increase their consumption as much as they

want.

Additionally, I increase the variance in the idiosyncratic income shock from σ2
w = 0.06 in

the baseline model to 0.16, which I characterize by the orange dashed line in Figure 13. Facing a

massive income shock, households will have a larger precautionary saving motive to hold the

asset (to fulfill their consumption demand against potential low income and cash flow) instead

of borrowing money to buy housing. Although the households expect a housing market boom,

they only slightly decrease their physical capital in the first period and then increase it until the

shock us realized. The reason that physical capital jumps further is that households want to hold

more housing services under the effect of an expected shock. However, they do not want to

borrow money and decrease their asset holdings to buy real estate. They can only increase their

labor supply to earn more wage income to buy housing. The complementarity between labor

and physical capital tempts households to increase their assets instead of decreasing them with a

higher asset return, which triggers a positive feedback loop on the boom in physical capital.
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Figure 14: Distributional Effect

Figure 14 provides a deeper examination of household heterogeneity and the effects on

distribution. Figure 14a illustrates the percentage deviation of the policy function related to

consumption across various levels of wealth distribution, based on fixed grid points. Among the

poor and middle-income groups, limited liquidity obstructs substantial investment in residential

assets. Consequently, as housing prices rise, the wealth effect surpasses the substitution effect,

prompting an increase in their consumption. Conversely, affluent individuals, endowed with

ample liquidity, can invest more substantially in residential assets. For this demographic, the

substitution between non-durable consumption and housing assets leads to a reduction in non-

durable consumption. Therefore, the presence of hand-to-mouth households, characterized

by a high MPC, amplifies the crowding-out effect, as evidenced by the jump in consumption

represented by the blue solid line in Figure 14a. Simultaneously, Figure 14b presents shifts in the

proportion of residential assets across different quantiles within the housing distribution, with a

notable increase in the residential asset share held by wealthy individuals. This trend verifies

the prior assertion that wealth inequality exacerbates the crowding-out effect (those who desire

residential assets most are those who have the greatest investment capability). Furthermore,

Figure 15 displays changes in the mass of hand-to-mouth households stimulated by fake news

shocks. At period 8, when households perceive a preference for housing over consumption, a

significant number rush into the real estate market, becoming wealthy hand-to-mouth households.

However, upon quickly discovering that the shock is fake, they dispose of the overinvested real

estate, deflating the housing market prices. The rapid downturn in the housing market induces

economic loss and forces some households into a hand-to-mouth status, generating another spike

at period 11. The increased proportion of hand-to-mouth households further exacerbates the

economic downturn from the demand side.

4.3.4 Policy Analysis

The quantitative results from the preceding section highlights the significant welfare losses

stemming from the crowding-out effect of overbuilding in the housing market after a bust. It
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stands to reason that if policymakers can effectively restrict the amplitude of housing market

bubbles, they could likewise diminish the welfare losses arising from these crowding-out effects

during bust periods, primarily by minimizing capital misallocation. In this section, I introduce a

macroprudential policy designed to dampen equity extraction during boom periods, consequently

mitigating the crowding-out effect. Drawing inspiration from the works of Galati and Moessner

(2013), Angelini et al. (2014) and Suh (2014), I incorporate a macroprudential policy rule as a

countercyclical collateral constraint on the capital-output ratio.

γt
γ

=

(
γt−1

γ

)ργ (υt
υ

)ηγ(1−ργ)
(23)

where γt is the collateral constraint in Equation 19 and υt is the capital-output ratio. γ and υ are

their corresponding values in steady state, and ηγ = 1.5.

Figure 16 demonstrates that in a model integrating this macroprudential policy, physical

investment consistently remains above its counterpart in the baseline model. This manifests the

potency of macroprudential policies in significantly moderating the crowding-out effect. Given

the countercyclical limitations imposed during housing market surges, both equity extraction

and asset reallocation are tempered, leading to a more moderate decline in consumption during

downturns. However, due to the persistence of the policy effect denoted by ργ , households,

particularly low-income households, face constraints in leveraging their residential assets to

stabilize their consumption. Overall, the macroprudential policy reduces the welfare loss from an

initial 13% in the baseline model to a revised 6%. Such a substantial reduction in welfare losses

manifests the main merit of macroprudential policies: their capacity to limit the overheated
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Figure 16: Fake news shock with macroprudential policy

economy and, hence, limit the crowding-out effect.

5 Conclusion

This paper documents a new mechanism through which a housing market boom magnifies a

recession. An unnecessary jump in residential construction spurred by fake news and imperfect

information will inflate a bubble in the housing market, which is a boom without a solid basis and

not supported by economic fundamentals. This overbuilding in the housing market crowds out

physical capital that is used to produce both durable and nondurable goods. The crowding-out

effect in the physical capital market aggravates the decline in output when the housing market

bubble busts because of the deficiency of physical capital. Firms do not have as much as capital

to support the optimal production under a specific level of TFP, so they will decrease production

and labor demand when facing a higher real interest rate and marginal production cost. I use

a simple model to argue theoretically that the crowding-out effect of overbuilding is affected

by relative intratemporal elasticity of substitution, financial friction, an idiosyncratic income

shock and wealth distribution. Later, the quantitative result from a full-fledged model verifies the

argument and demonstrates that the output loss caused by overbuilding is large.

However there are still some problems left for future studies. Even if imperfect information

did not exist, overbuilding and the crowding-out effect may still be a significant problem from

a business cycle perspective because they increase the economic volatility and households
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diverge further from their first-best equilibrium. Additionally, how can the government introduce

an optimal fiscal, monetary, or macroprudential policy to alleviate the crowding-out effect of

overbuilding? Is there any complementarity between overbuilding and nominal rigidity in New

Keynesian models that would further exacerbate overbuilding and the crowding-out effect?
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A Data Description

Real GDP Yt is directly downloaded listing “Real Gross Domestic Product” with seasonally

adjusted. Real consumption Ct is directly downloaded listing “Real personal consumption

expenditures: Nondurable goods” with seasonally adjusted. GDP deflator gdpdef is downloaded

listing “GDP Implicit Price Deflator in United States” with seasonally adjusted. Nominal

nondurable investment Inom
t is downloaded listing “Private Nonresidential Fixed Investment” with

seasonally adjusted. I get the real nondurable investment It by the formula It = Inom
t /gdpdef∗100.

The CPI which we take is “Consumer Price Index for All Urban Consumers: All Items Less

Shelter in U.S. City Average” since we should consider the correlation between house price and

normal CPI. Thus we downloaded the CPI without shelter term. I take the nominal interest rate

Rnom
t as “Effective Federal Funds Rate”. The inflation rate is calculated from the GDP defltor in

the form that πt =
deft−deft−1

deft−1
(Since we solve the inflation from deflator in quarterly data, the

inflation is measured within one quarter instead of annually). Combining the inflation πt and

nominal interest rate Rnom
t we can construct the real interest rate Rt = (

Rnom
t

100
+ 1)/(1 + πt)− 1

(I divided 100 because the original data is in percentage unit). The house supply Ht is measured

by “New Privately-Owned Housing Units Started: Total Units”. The nominal mortgage debt

MDnom
t comes from “Mortgage Debt Outstanding, All holders (DISCONTINUED)”. Since the

nominal mortgage debt is in money unit, I can directly get the real mortgage debt value from

MDt = MDnom
t /gdpdef ∗ 100 which is same as we did to get real investment. The real stock

price P a
t is calculated from “NASDAQ Composite Index” and normalized by GDP deflator as I

did in constructing real investment and real mortgage debt. The real house price P h
t is calculated

from “All-Transactions Indexes” collected by Federal Housing Finance Agency.

B Identification Step and Robustness Test to VAR Identifica-
tion

B.1 Identification with sign and zero restricution

Based on the observation and argument, I use a simple SVAR model to decompose the effect of

raised house price to investment. Given the model which is similar to Sims et al. (1986)

yt = c+Φ1yt−1 + ...+Φpyt−p + et (24)
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where

yt =



rt

mt

yt

pt

it

pht

ct


(25)

rt is the nominal interest rate; mt is the money supply; yt is the real output; pt is the price level;

it is the nominal investment; pht is the nominal price of house; ct is the real consumption of

non-durable goods. Most the data comes from FRED, Federal Reserve Bank of St. Louis. I use

treasury bill rate represents the nominal interest and GDP deflator for the price level. The price

of house comes from FHFA house price index. The detail about it will be discussed at appendix.

Meanwhile I use the short-run restriction as well as corresponding sign restriction to decompose

the shock term et from vt that

Pet = vt (26)

or detailedly

Pet ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 b11 0 0 0 0 0

b21 1 b23 b24 0 0 0

b31 0 1 0 b35 0 b37

b41 b42 b43 1 b45 0 0

0 0 0 0 1 b56 0

b61 0 b63 b64 0 1 0

b71 0 b73 0 0 b76 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



ert

emt

eyt

ept

eit

epht

ect


=



vrt

vmt

vyt

vpt

vit

vpht

vct


Figure 17 shows the IRF of one unite positive house price shock to output, investment, house

price and non-durable goods consumption. The black line is the path of related variable up to 20

period. The read dash line is their related confidence band under 90% calculating by monte-carlo

method. We can inspect from IRF that, house price inflation could stimulate the consumption of

durable goods as it is long-lasting goods and household could derive out utility by just holding it.

The household could feel satisfy and pleased either via living in this house or via owning the

house which is valuable every period. Meanwhile the household can obtain utility not only from

just holding and enjoying it each period, but also from financial market. The house is a goods that

could be consumed. While at the same time it is also a asset that could be collateral and offers

more liquidity to household. Household would use this liquidity to smooth their non-durable

consumption leisurely, which provide extra benefit to household.

Therefore after observing one unit positive shock in house price, household snap up the house

as house it not only a goods but also an asset which we discuss before. This increased demand
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Figure 17: IRF of house price inflation

draw up the house price even more which we can see the house price is raising not only lat the

beginning but also later. The house price in the end permanently increased because of increased

household demand. This increased house price stimulates household who would borrow more

from bank to buy house (the house supply discontinuity will aggravate this channel) or borrow

more to help them share the risk as collateral is more expensive. Firms will be more difficult to

borrow money to invest and the decreased demand in non-durable goods will also weaken firms’

propensity to invest or R&D. Investment is crowded out by this two effects and this is what we

can observe from the IRF. Investment drops the most and also spends longest time to recover.

Output and non-durable consumption stands behind it. However both of them go back to steady

state quickly which indicates that only the first jump in house price affects them. Later household

use their more valuable collateral to smooth the consumption as well as output. Thus these two

variable converge back quickly while because of strong and amplified effect both in demand and

supply side, investment converges much slower than other two variables. This portends that there

would be much larger drop in output if recession occurs because the accumulated decreased

investment will pass its influence through the capital, a long-lasting things, later.
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B.2 Contemporaneous real price shock

B.2.1 Process of estimation and identification

I detrend the main variable by taking logarithm first and first-order difference later. Then I get

the detrended real GDP, real consumption, real investment, cpi, house supply, real mortgage debt,

stock price and house price in lower-case letter. Then I ordered them in the vector

Yt = [yt, ct, it, cpit, rt, p
a
t , hst,mdt, p

h
t ]

′

I use the data period between 1987Q2 and 2006Q4. Then I add lagged term into the model up to

4 quarter and estimate the model

Y = [Y5, Y6...]

Xt−1 = [yt−1, ct−1, it−1, cpit−1, rt−1, p
a
t−1, hst−1,mdt−1, p

h
t−1, yt−2, ct−2, ..., p

h
t−4]

′

X = [1, X4, X5, ...]

Then use the projection matrix we can solve the factor that

Φ̂ = Y X ′(XX ′)−1

The residue is

ê = Y − ΦX

and the variance of estimation error would be

Ω̂ = cov(ê′)

To simulate the model we can rewrite the variables into companion form such that

Yt = [yt, ct, it, cpit, rt, p
a
t , hst,mdt, p

h
t , yt−1, ct−1, ..., p

h
t−3]

′

Denote P̂ = chol(Ω̂) and

Φ̂ =



Φ1 Φ2 Φ3 . . . Φp

In 0 0 . . . 0

0 In
. . . . . . 0

... . . . . . . . . . ...

0 . . . 0 In 0


where Φ(:,2:end) = [Φ1Φ2Φ3 . . .Φp] since I have intercept coefficient term with 1 in X .

Meanwhile we define

P̂ =

[
P̂ 0

0 0

]
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The shock term is

νn×1 = [0, 0, ..., 1]′

which means there is only one unit shock happened at house price row.

Similarly I should write it in companion form such that

ν = [ν,0]

Then we can get the IRF that

IRFt = Φ̂
t
P̂ ν

where t = 0, 1, 2, ..., 20.

Finally we only take first 1 to n items in IRFt. Since I take first-order difference to most of

the data, at this stage I also calculate the cumsum of IRF to return the accumulated response.

B.2.2 Contemporaneous real price shock

Figure 17 in the appendix sheds light on the crowding-out effect engendered by a housing market

boom. However, given the speed at which the impulse response function (IRF) reverts to the

steady-state, it may not generate a significant scarcity in physical capital, thereby rendering the

crowding-out effect less consequential in this rudimentary identification test. Moreover, the

identification method I employed, namely Sims et al. (1986), has been critiqued for its potential

overemphasis on identifying the underlying shocks, occasionally leading to artificial unreliability.

To surmount these limitations, I utilize an alternative canonical workhorse identification method,

the Cholesky decomposition, to identify the effect of contemporaneous housing price shocks.

Following the method of Bernanke and Mihov (1998), Cholesky decomposition ensures that the

shock can initially only impact the last variable, while the variables that precede it will not be

contemporaneously influenced by the shock. Throughout this section, I argue the implications

of the crowding-out effect incited by a housing market boom devoid of fundamental support.

Therefore, I place the housing price at the end to simulate a nonfundamental housing price boom,

where only the housing price is stimulated initially. As a result, a single unit housing price shock

triggers the movement of other variables, following the inherent relationship and mechanism (Φ

in Equation 1).Inspired by existing literature, I order the economic variables in the data vector Yt
as

Yt = [Υt, yt, ct, it, rt, r
d
t , qt, h

s
t , p

h
t ]

′ (27)

where Υt is the NAHB/Wells Fargo Housing Market Index; yt is real GDP; ct is real consumption

plus services; it is real investment in the nonresidential sector; rt is the real interest rate; rdt is the

real mortgage debt rate; qt is the real stock price index; hst is the real housing supply; and pht is

the real housing price. I select the time interval between 1985Q1 and 2007Q2 when the housing
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market boom reached its peak before the Great Recession.25 I add housing market index Υt to

the estimation for comparative purposes because it is further used in Sections 2.1 and 2.2. All

the variables are in logarithmic form and detrended by hybrid specification, a method through

which I use all nonstationary variables as the growth rate, and all the variables in Yt pass the

unit-root test.
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Figure 18: IRF to one unit house price jump

Figure 18presents the impulse responses to a one-unit housing price shock, encased within a

90% confidence band. It reveals that a 10 basis point (bp) initial increase in housing price pht
instigates a housing market boom, escalating the housing price to a peak of 60bp four quarters

later. This is approximately six times larger than the original increase. Individuals lacking

sufficient residential asset holdings display optimism and a strong desire to acquire more houses.

This, in turn, shifts the demand curve of residential assets upward as both price and quantity

increase simultaneously. However, these individuals make only a partial down payment for the

asset value, borrowing the remainder from commercial banks as mortgage debt. In parallel, those

who already possess housing leverage the increased housing price to extract equity and generate

liquidity, particularly if they are financially constrained and require more liquidity to meet

their consumption needs. Nevertheless, the initial impacts on the consumption and output are

insignificant or negligible, potentially due to identification problems or data issues as argued by

Sims (1998), Christiano et al. (1999) and Romer and Romer (2004). Investment in the production

(of consumption) sector declines throughout the entire period, stabilizing after two years at

25In the appendix, I perform robustness tests to this span selection by extending the data to 2019Q4 with a shadow
rate or 1-year treasury bond rate that is proposed by Gertler and Karadi (2015). The crowding-out effect exists in all
these robustness tests.
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approximately 1% annualized. This clearly uncovers the crowding-out effect. It demonstrates

that the crowding-out effect is potent and sensitive to housing prices -- a 10bp increase in housing

price engenders a 100bp decrease in investment. This overreaction suggests an underlying

conduit that transmits and amplifies the flow from the housing price to physical investment, and

the decline in capital demand decreases the capital price by up to 7%. Observations reveal that an

increase in the housing price corresponds to an increase in housing supply in the same direction,

affirming the two key arguments discussed previously: overbuilding and a crowding-out effect

spurred by a nonfundamental housing price demand shock. Furthermore, the nonexponential

expansion in housing supply sheds light on the shape of the supply function in the housing

market, which is not fully inelastic, contradicting the assumption made in the literature.

B.2.3 Alternative detrend Method

Alternatively I also use another method to deal with the data which we call Vector Error

Correction Method (VECM) in literature. I add the year number into the model to try to detrend

the data. I marked the year with its “number” and add 0.1 to 0.4 on it as the label of quarter.

Then I divided these “number” by 1000 to get a comfortable scalar. Specifically we take

Yt = [t, t2, t3, yt, ct, it, cpit, rt, p
a
t , hst,mdt, p

h
t ]

′

B.2.4 Confidence Band-MC Method

Here I explain the detailed steps that I used to calculate the confidence band of t he estimation

using Monte Carlo method. Since there is no difference in steps between I estimate the confidence

band in method I and method II, I only show the first part for simplicity.

I can calculate the estimated variance of the coefficient by

σ̂2
Φ̂
=

Ω̂
⊗(

XX′

T

)−1

T

Then I draw the coefficient simple Φ̃(b) from the distribution

vec(Φ̂) ∼ N
(

vec
(
Φ̂′
)
, σ̂2

Φ̂

)
At the same time the estimated variance of the coefficient variance would be

σ̂2
Ω̂
=

2D+
n

(
Ω̂
⊗

Ω̂
)
D+′
n

T

where D+
n = (D′

nDn)
−1Dn is the Moore-Penrose generalized inverse of duplication matrix Dn
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I generate the variance simple Ω̃(b) from the distribution

vech(Ω̂) ∼ N
(

vech(Ω̂), σ̂2
Ω̂

)
Then use the duplication matrix to transfer back to

vec(Ω̃(b)) = Dnvech(Ω̃(b))

C Purification Process

In this section I first show that there is another implicit necessary condition of identification.

After that I show that given different state space model we cannot arbitrarily add lag and lead

term of gt and Etgt+6 because of the violation of necessary condition. In the end I discuss the

detailed purification method I used and the how I pin down the informative span τ through the

purification.

C.1 Orthogonal Demand

Now let me consider the news shock under perfect information cases. For simplicity I assume

the news is announced one period ahead of the time when it realizes (τ = 1). Given the structure

form  1 −α3 0

−α1 1 −α2

0 0 1


 yt

gt

wt

 =

 ρy 0 0

0 ρg 1

0 0 0


 yt−1

gt−1

wt−1

+

 0 0

1 0

0 1

[ ut

wt

]

Where α1 denotes the effect of monetary policy shock can affect perception via macro-variable

yt. α2 denotes the endogenous effect of news shock.

Setting α1 = 0, α2 = 0.5, α3 = 1, ρy = 0.6, ρg = 0.9 we can get yt

gt

wt

 =

 0.6 0.9 1

0 0.9 1

0 0 0


 yt−1

gt−1

wt−1

+

 1 0.5

1 0.5

0 1

[ ut

wt

]

We can see wt has two effects on yt: contemporaneous effect 0.5 and realization effect 1 one

period later. I further denote Φ =

 0.6 0.9 1

0 0.9 1

0 0 0

, Rw = [0.5, 0.5, 1]′, Ru = [1, 1, 0]′ .

The identification method I used is based on the forecast error and since all the shock is
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normalized to 1, we can get

yt+3 − Etyt+3 = Rw︸︷︷︸
wt+3

+ΦRw︸︷︷︸
wt+2

+Φ2Rw︸ ︷︷ ︸
wt+1

+ Ru︸︷︷︸
ut+3

+ΦRu︸︷︷︸
ut+2

+Φ2Ru︸ ︷︷ ︸
ut+1

How can we say that the shock w plays the largest row in explaining yt+3 − Etyt+3? No we

cannot and the identified news shock might become R∗ = β1Rw + β2Ru. Therefore we need the

contemporaneous orthogonal constraint. In other words we use a purified gt, ĝt to rule out the

possibility that Ru comes into R∗. Now let us consider the reduced-form VAR again yt

ĝt

wt

 = Φ̂

 yt−1

ĝt−1

wt−1

+
[
0, R̂û, R̂w

] [ ût

wt

]

As long as cov (wt, ût) = 0, we will have R̂′
ûR̂w = 0. Then even though we still have

yt+3 − Etyt+3 = R̂w︸︷︷︸
wt+3

+ΦR̂w︸︷︷︸
wt+2

+Φ2R̂w︸ ︷︷ ︸
wt+1

+ R̂û︸︷︷︸
ût+3

+ΦR̂û︸︷︷︸
ût+2

+Φ2R̂û︸ ︷︷ ︸
ût+1

we can get R∗ = R̂w because any combination R = β1R̂w + β2R̂û will be ruled out as

R̂′
ûR = β2 ̸= 0

C.2 Another necessary condition of news shock identification: cov (ĝt, wt−1) ̸=
0

Given the AR process of gt follows

gt = ρggt−1 + wt−1 + ut + α2wt

what I want is to extract the effect of wt out of gt. Given

Etgt+6 = ρ6ggt + ρ5gwt
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A regression of Etgt+6 on gt will get the residual uwt = ρ5gwt. Then let us run the regression of gt
on uwt and clean out the α2wt term in gt. In the end what we get is the uHIM that

uHIM
t = ρggt−1 + wt−1 + ut = ĝt

= gt − α2wt

Pay attention that now cov (ĝt, wt) = 0 but cov (ĝt, wt−1) ̸= 0. I will discuss this inequality later.

Furthermore, it is worth to notice that we cannot observe wt or wt−1, therefore the DGP

would be [
yt

ĝt

]
= Φ̃

[
yt−1

ĝt−1

]
+
[
R̃w, R̃û

] [ wt

ut + γwt−1

]

where γ = 1 + ρα and Q =
[
R̃w, R̃û

] [
R̃w, R̃û

]′
.

Therefore as long as cov (ut + γwt−1, wt) = 0, we can get R∗ = R̃w.

What if we also cleaned out wt−1 out of gt and got ũHIM
t = ρggt−1 + ut = g̃t = gt − α2wt −

wt−1? This time both cov (g̃t, wt) = 0 and cov (g̃t, wt−1) = 0 hold. The can we separate these
two models below[

yt

g̃t

]
= Φ̃

[
yt−1

g̃t−1

]
+
[
R̃wt , R̃ũ

] [ wt

ut + ρgαwt−1 + ρgwt−2

]

and [
yt

g̃t

]
= Φ̃

[
yt−1

g̃t−1

]
+
[
R̃wt−1 , R̃ũ

] [ wt−1

ut + ρgαwt−1 + ρgwt−2

]
when ρgα ≈ 0? Basically we cannot. Therefore the condition cov (ĝt, wt−1) ̸= 0 is necessary.

C.3 Exogenous gt w.r.t wt

C.3.1 Perfect Information

C.3.1.1 uniquely identification

Given the fundamental process follows

gt = ρggt−1 + wt−τ + wτt (28)

= (1− ρgL)
−1wt−τ + (1− ρgL)

−1wτt

Then

gt+τ |t = ρτggt + ρτ−1
g wt−τ+1 + ρτ−2

g wt−τ+2 + · · ·+ wt (29)
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Therefore lagged expectation up to τ follows

gt|t−τ = ρτggt−τ + ρτ−1
g wt−2τ+1 + ρτ−2

g wt−2τ+2 + · · ·+ wt−τ

= ρτg (1− ρgL)
−1wτt−τ + ρτg (1− ρgL)

−1wt−2τ + ρτ−1
g wt−2τ+1 + ρτ−2

g wt−2τ+2 + · · ·+ wt−τ

= ρτg (1− ρgL)
−1wτt−τ + (1− ρgL)

−1wt−τ (30)

Then the projection of gt on gt|t−τ yields

ut = gt − gt|t−τ
(
g′t|t−τgt|t−τ

)−1
g′t|t−τgt

will be almost independent with news shock wt−τ and exactly independent with wt as the news

term (1− ρgL)
−1wt−τ can be perfectly purified out. Specifically, for unique τ , the difference

gt − gt|t−τ = (1− ρgL)
−1wτt − ρτg (1− ρgL)

−1wτt−τ in which wt−τ or wt never emerge.

Figure 19a shows the related numerical exercise.

C.3.1.2 loose identification

Most of time we do not know the number of unique τ or this uniqueness may not even exist.

There are several different type of news shock with different information power, i.e. τ1 > τ2 >

τ3 > · · · > τn. Therefore I relax the identification method discussed in previous subsection by

adding lag and lead terms (relative to gt|t−τ ) in to projection. Write the lag of equation 30

gt−1|t−τ−1 = ρτg (1− ρgL)
−1wτt−τ−1 + (1− ρgL)

−1wt−τ−1

...
...

gt−n|t−τ−n = ρτg (1− ρgL)
−1wτt−τ−n + (1− ρgL)

−1wt−τ−n

and lead

gt+1|t−τ+1 = ρτg (1− ρgL)
−1wτt−τ+1 + (1− ρgL)

−1wt−τ+1

...
...

gt+τ−1|t−1 = ρτg (1− ρgL)
−1wτt−1 + (1− ρgL)

−1wt−1 (31)

It is easy to comprehend the harmless of this loose identification to corr(wt, ut) as wt does not

emerge either. Meanwhile it is also harmless to corr(wt−τ , ut) as wt−τ enters into equation 31

with smaller impact coefficient than that in gt|t−τ and it can still purify the effect of wt−τ from gt.

However the lead term wt−τ+1, wt−τ+2, ... , wt−1 cannot be cleaned out from gt.

Figure 19b shows the related numerical exercise.
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C.3.1.3 arbitrary information power τ

Now we further relax the assumption of information power τ which is arbitrary to the expectation

data that we observed, which I denote as k. Basically the previous augment about expectation 30

or 31 but now what we observe and can be used to identify is gt+k|t where k < τ or k > τ .

When k > τ , W.O.L.G, I assume k = τ + 1, then the observation becomes

gt|t−k = ρτg (1− ρgL)
−1wτt−τ−1 + (1− ρgL)

−1wt−τ−1

Furthermore, the lag terms of observation are

gt−1|t−k−1 = ρτg (1− ρgL)
−1wτt−τ−2 + (1− ρgL)

−1wt−τ−2

...
...

gt−n|t−k−n = ρτg (1− ρgL)
−1wτt−τ−(n+1) + (1− ρgL)

−1wt−τ−(n+1) (32)

The lead terms of observation are

gt+1|t−k+1 = ρτg (1− ρgL)
−1wτt−τ + (1− ρgL)

−1wt−τ
...
...

gt+k−1|t−1 = ρτg (1− ρgL)
−1wτt−1 + (1− ρgL)

−1wt−1 (33)

These two equation 32 and 33 demonstrate that we can still fully purify wt and almost purify

wt−τ .

Figure 19c shows the related numerical exercise.

When k < τ , W.O.L.G, I assume k = τ − 1, then the observation becomes

gt|t−k = ρτg (1− ρgL)
−1wτt−τ+1 + (1− ρgL)

−1wt−τ+1

Furthermore, the lag terms of observation are

gt−1|t−k−1 = ρτg (1− ρgL)
−1wτt−τ + (1− ρgL)

−1wt−τ
...
...

gt−n|t−k−n = ρτg (1− ρgL)
−1wτt−τ−n+1 + (1− ρgL)

−1wt−τ−n+1 (34)

The lead terms of observation are

gt+1|t−k+1 = ρτg (1− ρgL)
−1wτt−τ+2 + (1− ρgL)

−1wt−τ+2

...
...

gt+k−1|t−1 = ρτg (1− ρgL)
−1wτt−1 + (1− ρgL)

−1wt−1 (35)
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These two equation 34 and 35 demonstrate that we can still fully purify wt and almost purify

wt−τ .

Figure 19d shows the related numerical exercise.
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Figure 19: Cross-Correlation under Perfect Information (Exogenous gt)

C.3.2 Imperfect Information: fundamental impact gt is observable.

C.3.2.1 uniquely identification

Given the fundamental process follows

gt = ρggt−1 + wt−τ + wτt (36)

= (1− ρgL)
−1wt−τ + (1− ρgL)

−1wτt

Then

gt+τ |t = ρτggt + ρτ−1
g wt−τ+1|t + ρτ−2

g wt−τ+2|t + · · ·+ wt|t (37)
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where

wt−τ+1|t =
σ2
w

σ2
w + σ2

ν

w̃t−τ+1

=
σ2
w

σ2
w + σ2

ν

(wt−τ+1 + νt−τ+1)

Therefore lagged expectation up to τ follows

gt|t−τ = ρτggt−τ + ρτ−1
g wt−2τ+1|t−τ + ρτ−2

g wt−2τ+2|t−τ + · · ·+ wt−τ |t−τ

= ρτg (1− ρgL)
−1wτt−τ + ρτg (1− ρgL)

−1wt−2τ +

j=τ−1∑
j=0

ρjgL
jwt−τ |t−τ (38)

It is worth to notice that the news shock realized at time t, wt or w̃t, is exactly independent with

the residual as it does not emerge neither on LHS or RHS.

In the simple regression case we can get that

α̂gt|t−τ =
cov(gt|t−τ , gt)

var(gt|t−τ )

≈
σ2
w

σ2
w+σ

2
ν

1−ρ2τg
1−ρ2g

σ2
w

1−ρ2τg
1−ρ2g

var(wt−τ |t−τ )
= 1

which follows cov(wt, νt) = 0. Therefore the residual ut contains the elements

ut ≈
σ2
ν

σ2
w + σ2

ν

j=τ−1∑
j=0

ρjgL
jwt−τ −

σ2
w

σ2
w + σ2

ν

j=τ−1∑
j=0

ρjgL
jνt−τ

Therefore the observation term w̃t−τ is cleaned out as cov (ut, w̃t−τ ) =
σ2
ν

σ2
w+σ

2
ν
σ2
w−

σ2
w

σ2
w+σ

2
ν
σ2
ν = 0.

Figure 20a shows the related numerical exercise.

C.3.2.2 loose identification

Similar to the cases in perfect information.

Figure 20b shows the related numerical exercise.

C.3.2.3 arbitrary information power τ

Similar to the cases in perfect information.

Figure 20c and 20d shows the related numerical exercise.
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Figure 20: Cross-Correlation under Imperfect Information (Exogenous gt but observable)

C.3.3 Imperfect Information: fundamental impact gt is unobservable.

C.3.3.1 uniquely identification

Given the fundamental process follows

gt = ρggt−1 + wt−τ + wτt (39)

= (1− ρgL)
−1wt−τ + (1− ρgL)

−1wτt

We can only observe the perception of gt at t

gt|t = γ1gt−1|t−1 + γ2wt−τ |t−τ + γ7g̃t

= γ1gt−1|t−1 + γ2wt−τ |t−τ + γ7gt + γ7ν
τ
t

= ρgγ2gt−1|t−1 + γ2wt−τ |t−τ + γ7 (1− ρgL)
−1wt−τ + γ7 (1− ρgL)

−1wτt + γ7ν
τ
t

= γ2 (1− γ2ρgL)
−1wt−τ |t−τ + γ7 (1− γ2ρgL)

−1 (1− ρgL)
−1wt−τ

+ γ7 (1− γ2ρgL)
−1 (1− ρgL)

−1wτt + γ7 (1− γ2ρgL)
−1 ντt (40)
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Since now the household cannot observe gt neither, they have no more other information source

to verify the news shock wt−τ . Therefore their perception about it shock will not change as time

goes forward, which implies wt−τ |t−τ = wt−τ |t.

Then the expectation term follows

gt+τ |t = ρτggt|t + ρτ−1
g wt−τ+1|t−τ+1 + ρτ−2

g wt−τ+2|t−τ+2 + · · ·+ wt|t (41)

Therefore lagged expectation up to τ follows

gt|t−τ = ρτggt−τ |t−τ + ρτ−1
g wt−2τ+1|t−2τ+1 + ρτ−2

g wt−2τ+2|t−2τ+2 + · · ·+ wt−τ |t−τ

= ρτg
[
γ2 (1− γ2ρgL)

−1wt−2τ |t−2τ + γ7 (1− γ2ρgL)
−1 (1− ρgL)

−1wt−2τ

]
(42)

+ ρτg
[
γ7 (1− γ2ρgL)

−1 (1− ρgL)
−1wτt−2τ + γ7 (1− γ2ρgL)

−1 ντt−2τ

]
+

j=τ−1∑
j=0

ρjgL
jwt−τ |t−τ

To further simplify 40 as

gt|t = γ7 (1− γ2ρgL)
−1 (1− ρgL)

−1wτt + γ7 (1− γ2ρgL)
−1 ντt

+ γ2 (1− γ2ρgL)
−1wt−τ |t−τ + γ7

γ2
γ2 − 1

(1− γ2ρgL)
−1wt−τ

+ γ7
1

1− γ2
(1− ρgL)

−1wt−τ

Since γ2 + γ7 = 1, we can get

gt|t = γ7 (1− γ2ρgL)
−1 (1− ρgL)

−1wτt + γ7 (1− γ2ρgL)
−1 ντt

+ γ2 (1− γ2ρgL)
−1wt−τ |t−τ − γ2 (1− γ2ρgL)

−1wt−τ + (1− ρgL)
−1wt−τ

Similarly in the simple regression case we can get that

α̂gt|t−τ =
cov(gt|t−τ , gt|t)

var(gt|t−τ )

≈ Φ
1−ρ2τg
1−ρ2g

var(wt−τ |t−τ )
= 1

where Φ = γ2
1−(γ2ρ2g)

2τ

1−γ22ρ4g
σ2
w̃ − γ2

1−(γ2ρ2g)
2τ

1−γ22ρ4g
σ2
w

σ2
w+σ

2
ν
σ2
w + σ2

w

σ2
w+σ

2
ν

1−ρ2τg
1−ρ2g

σ2
w = σ2

w

σ2
w+σ

2
ν

1−ρ2τg
1−ρ2g

σ2
w as σ2

w̃ =

σ2
w

σ2
w+σ

2
ν
σ2
w.
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Therefore the residual ut contains the elements

ut ≈ γ2 (1− γ2ρgL)
−1wt−τ |t−τ − γ2 (1− γ2ρgL)

−1wt−τ

+ (1− ρgL)
−1wt−τ −

j=τ−1∑
j=0

ρjgL
jwt−τ |t−τ

However under this scenario the observation term w̃t−τ cannot be cleaned out because

cov (w̃t−τ , ut) ≈ γ2
σ2
w

σ2
w + σ2

ν

σ2
w̃ − γ2

σ2
w

σ2
w + σ2

ν

σ2
w +

σ2
w

σ2
w + σ2

ν

σ2
w − σ2

w

σ2
w + σ2

ν

σ2
w̃

= (1− γ2)
σ2
wσ

2
ν

σ2
w + σ2

ν

̸= 0

Figure 21a shows the related numerical exercise.

C.3.3.2 loose identification

Write the lag of equation 42

gt−1|t−τ−1 = Θt−τ−1 + (1− ρgL)
−1wt−τ−1|t−τ−1

...
...

gt−n|t−τ−n = Θt−τ−n + (1− ρgL)
−1wt−τ−n|t−τ−n

and lead

gt+1|t−τ+1 = Θt−τ+1 + (1− ρgL)
−1wt−τ+1|t−τ+1

...
...

gt+τ−1|t−1 = Θt−1 + (1− ρgL)
−1wt−1|t−1

where

Θt = ρτg
[
γ2 (1− γ2ρgL)

−1wt−τ |t−τ + γ7 (1− γ2ρgL)
−1 (1− ρgL)

−1wt−τ
]

+ ρτg
[
γ7 (1− γ2ρgL)

−1 (1− ρgL)
−1wτt−τ + γ7 (1− γ2ρgL)

−1 ντt−τ
]

Similar to the cases in perfect information.

Figure 21b shows the related numerical exercise.

C.3.3.3 arbitrary information power τ

Similar to the cases in perfect information.

Figure 21c and 21d shows the related numerical exercise.
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Figure 21: Cross-Correlation under Imperfect Information (Exogenous gt but unobservable)

C.4 Endogenous gt w.r.t wt

C.4.1 Perfect Information

C.4.1.1 uniquely identification

Now let us introduce the endogeneity of wt on gt as

gt = ρggt−1 + wt−τ + wτt + αwt

Then the expectation of gt+τ at time t follows

gt+τ |t = ρτggt + ρτ−1
g wt−τ+1 + ρτ−2

g wt−τ+2 + · · ·+ wt

= ρτ+1
g gt−1 + ρτg (wt−τ + wτt + αwt)

+ ρτ−1
g wt−τ+1 + ρτ−2

g wt−τ+2 + · · ·+ wt
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What we need is to clean out wt from gt and retain wτt . Therefore we first run the regression of

gt on gt−1 (or gt+τ |t on gt+τ−1|t−1) to get the estimated ρ̂g. Because the expectation of gt+τ at t is

based on the observation gt, we can purify the contemporaneous expectation term out of gt and

remain the news part
∑j=τ−1

j=0 ρjgL
jwt through ĝt+τ |t = gt+τ |t−ρτgt. Then we can clean the news

shock wt out of gt by simple regression. In the numerical exercise below corr (ut, wt) < 3e−3

holds.

Figure 22a shows the related numerical exercise.

If you further want to clean out wt−τ (though we in fact do not want and to the contrary we

should make sure that wt−τ exists in gt), you could use the method mentioned in section C.3.1.2

to yield

Figure 22b shows the related numerical exercise.

C.4.1.2 loose identification

Similar to the arguments in section C.3.1.2, I relax the identification method discussed in previous

subsection by adding lead terms (relative to ĝt+τ |t) in to projection. Write the lead of equation 30

ĝt+τ |t = ρτ−1
g wt−τ+1 + ρτ−2

g wt−τ+2 + · · ·+ wt =

j=τ−1∑
j=0

ρjgL
jwt

...
...

ĝt+τ+n|t+n = ρτ−1
g wt−τ+1+n + ρτ−2

g wt−τ+2+n + · · ·+ wt+n =

j=τ−1∑
j=0

ρjgL
jwt+n

Figure 22c shows the related numerical exercise. It is worth to notice that the approximately

zero of cov (ut, wt) results from the estimation error of ρ̂g. If we use the true ρg to conduct the

purification process, cov (ut, wt) will be exactly zero as figure 22d shows.

Moreover, write the lag terms

gt+τ−1|t−1 = ρτ−1
g wt−τ + ρτ−2

g wt−τ+1 + · · ·+ wt−1

...
...

gt−m|t−τ−m = ρτ−1
g wt−2τ−m+1 + ρτ−2

g wt−2τ−m+2 + · · ·+ wt−τ−m

It seems harmless to add the lagged term into purification regression and figure 23a verifies this

argument.

C.4.1.3 arbitrary information power τ

Similar to section C.3.1.3, now we observe and can be used to identify is gt+k|t where k < τ or

k > τ instead of gt+τ |τ .
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(d) Cross-Correlation between ut and wt with
true ρg and n = τ + 4

Figure 22: Cross-Correlation under Perfect Information-1 (Endogenous gt)

When k > τ , W.O.L.G, I assume k = τ + 1, then the observation becomes

ĝt+k|t = ρk−1
g wt−τ+1 + ρk−2

g wt−τ+2 + · · ·+ ρgwt =

j=k−1∑
j=1

ρjgL
jwt

Furthermore, the lead terms of observation are

ĝt+k|t = ρk−1
g wt−τ+1 + ρk−2

g wt−τ+2 + · · ·+ ρgwt =

j=k−1∑
j=1

ρjgL
jwt

...
...

ĝt+k+n|t+n = ρk−1
g wt−τ+1+n + ρk−2

g wt−τ+2+n + · · ·+ ρgwt+n =

j=k−1∑
j=1

ρjgL
jwt+n
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The lag terms of observation are

gt+τ−1|t−1 = ρk−1
g wt−τ + ρk−2

g wt−τ+1 + · · ·+ ρgwt−1

...
...

gt−m|t−τ−m = ρk−1
g wt−2τ−m+1 + ρk−2

g wt−2τ−m+2 + · · ·+ ρgwt−τ−m

Therefore we can add both lead and lag terms into purification regression safely and figure 23b

verifies this argument.
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(a) Cross-Correlation between ut and wtwith
m = τ and n = τ + 4
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(b) Cross-Correlation between ut and wtwith
m = τ and n = τ + 4
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(c) Cross-Correlation between ut and wtwith
k = τ − 3 and n = τ + 4
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k = τ − 3, m = τ + 1 and n = τ + 4

Figure 23: Cross-Correlation under Perfect Information-2 (Endogenous gt)

When k < τ , W.O.L.G, I assume k = τ − 1, then the observation becomes

ĝt+k|t = ρk−1
g wt−τ + ρk−2

g wt−τ+1 + · · ·+ wt−1 =

j=k−1∑
j=0

ρjgL
jwt−1

Thus we cannot uniquely clean out wt from gt with ĝt+k|t in which wt does not emerge. When
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we impose loose identification and add the lead term

ĝt+k|t = ρk−1
g wt−τ + ρk−2

g wt−τ+1 + · · ·+ wt−1 =

j=k−1∑
j=0

ρjgL
jwt−1

...
...

ĝt+k+n|t+n = ρk−1
g wt−τ+n + ρk−2

g wt−τ+1+n + · · ·+ wt+n−1 =

j=k−1∑
j=0

ρjgL
jwt+n−1

the news term wt is embedded into ĝt+k+1|t+1 and we can clean out wt via the loose identification.

Figure 23c shows this identification result.

Similar to the argument in loose identification, since the lagged terms does not contains

any information about contemporaneous news shock, it is harmless to add the lag part into

identification and figure 23d shows the numerical result.

C.4.2 Imperfect Information: fundamental impact gt is unobservable.

C.4.2.1 uniquely identification

Given the fundamental process follows26

gt = ρggt−1 + wt−τ + wτt + αwt

gt|t = γ1gt−1|t−1 + γ2wt−τ |t−τ + γ2αwt|t + γ7g̃t (43)

Then the expectation follows

gt+τ |t = ρτggt|t + ρτ−1
g wt−τ+1|t−τ+1 + ρτ−2

g wt−τ+2|t−τ+2 + · · ·+ wt|t

gt+τ+1|t+1 = ρτggt+1|t+1 + ρτ−1
g wt−τ+1|t−τ+1 + ρτ−2

g wt−τ+2|t−τ+2 + · · ·+ wt|t

Therefore the estimation step of AR coefficient cannot be the autoregression on perception gt|t
but on the expectation gt+τ |t. Given the forward-looking news estimation

ĝt+τ |t = ρτ−1
g wt−τ+1|t−τ+1 + ρτ−2

g wt−τ+2|t−τ+2 + · · ·+ wt|t

ĝt+τ−1|t−1 = ρτ−1
g wt−τ |t−τ + ρτ−2

g wt−τ+1|t−τ+1 + · · ·+ wt−1|t−1

Everything goes back to the perfect information cases and all the arguments in perfect information

case will also be true under imperfect information case. Figure 24 shows the experiment result

of this identification result.
26In section D.4 I provide rigorous proof of equation 43.
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Figure 24: Cross-Correlation under Imperfect Information (Endogenous unobservable gt)

C.5 Endogenality, Heteroscedasticity and Biased-estimation Problem dur-
ing Purification

C.5.1 get wt out of 5

Because gt contains wt, if we run the regression of Etgt+6 on gt there will be an endogenal-

ity problem (residual is correlated with independent variable) and the estimated ρ6g is biased.

Therefore I use the model

Etgt+6 = ρ7ggt−1 + ρ6gwt−3 + ρ6gut + ρ5gwt−2 + ρ4gwt−1 +
(
ρ6gα2 + ρ3g

)
wt (44)

If we run the regression of Etgt+6 on gt−1, we can get uEt = ρ6gwt−3 + ρ6gut+ ρ5gwt−2 + ρ4gwt−1 +(
ρ6gα2 + ρ3g

)
wt

The problem is that gt−1 contains wt−1, wt−2, wt−3 too, as gt−1 = ρggt−2 + wt−4 + ut−1 +

α2wt−1, and the endogenality problem still hold.

Adding the lag span may identify up to scale

Etgt+6 = ρ8ggt−2+ρ
7
gwt−4+ρ

7
gut−1+ρ

6
gwt−3+ρ

6
gut+ρ

5
gwt−2+

(
ρ4g + ρ7gα2

)
wt−1+

(
ρ6gα2 + ρ3g

)
wt

because cov(gt−2, ρ
5
gwt−2) < cov(gt−1, ρ

4
gwt−1) holds and in the end the endogenality in first

step will be solved. However, we should also care about the trade-off problem here, because

when we add the lag span we actually introduce more term into residual, especially ut and ut−1.

This will introduce the endogenality problem into our second regression step: run regression of

gt on uEt = ρ7gwt−4 + ρ7gut−1 + ρ6gwt−3 + ρ6gut + ρ5gwt−2 +
(
ρ4g + ρ7gα2

)
wt−1 +

(
ρ6gα2 + ρ3g

)
wt.

C.5.2 run regression of 5 on wt

Assume I use the regression of equation 44 and get

uEt = ρ6gwt−3 + ρ6gut + ρ5gwt−2 + ρ4gwt−1 +
(
ρ6gα2 + ρ3g

)
wt (45)
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we cannot directly run regression of gt on uEt because there are three elements (wt, ut, and wt−3)

in gt that are correlated with uEt . Given the regression gt = γ1u
E
t + εt we cannot make sure

that cov(εt, wt) = 0 (Through simulated data, it is indeed not zero or close to zero up to scale)

because a lot of elements in uEt correlate with the non-wt elements in gt such as ut and wt−3

which will change the projection and cause γ1 ̸=
(
ρ6gα2 + ρ3g

)
, the coefficient in front of wt in

45. To solve the problem I further add the lead term of uEt into the second step of purification.

For instance, if I use the regression gt = γ1u
E
t+3 + εt instead of gt = γ1u

E
t + εt , the problem can

be solved, as in uEt+3 = ρ6gwt + ρ6gut+3 + ρ5gwt+1 + ρ4gwt+2 +
(
ρ6gα2 + ρ3g

)
wt+3 the only element

that correlates with gt is wt.

Therefore the only problem left is that how to determine the informative power of news

shock? If 5 becomes

gt = ρggt−1 + α1yt + wt−1 + ut + α2wt

the equation

uEt = ρ6gwt−1 + ρ6gut +
(
ρ6gα2 + ρ5g

)
wt (46)

will hold and we may use uEt+1 to clean the gt yet not uEt+3. Meanwhile, when 5 becomes

gt = ρggt−1 + α1yt + wt−9 + ut + α2wt

the equation

uEt = ρ6gwt−9 + ρ6gut + ρ5gwt−8 + ρ4gwt−7 + ρ3gwt−6 + ρ2gwt−5 + ρgwt−4 +wt−3 + ρ6gα2wt (47)

will hold and we may use uEt+9.

By observing the equation 46 and 47, we find that it is possible to use ACF of uEt to pin

down the informative power of news τ because difference news with different informative power

will imply different “MA” process with different shape of ACF. For instance, if τ = 1 holds,

equation 46 will imply that the ACF will converge to zero quickly at second lag. To the contrary,

if τ = 9 holds, equation 47 will imply that the ACF will converge to zero sluggishly at ninth lag.

Hence the speed of convergence of ACF will help us to find the informative power of housing

price news shock even we only have the expectation data up to six month later.

C.6 Purified perception on the status of housing market

The first task to purify wt out of gt in equation 5 is to find appropriate macro variables xt which

affects the perception of the status of housing market. Taking an overall consideration on the

data constraint and efficiency, I use real interest rate, inflation, M2 supply, unemployment rate

and nondurable consumption as the independent macro variables that affect the perception gt.

Because of lack of monthly investment data, I use the real interest rate to reveal the effect of

physical capital and investment. The inflation rate and M2 supply reveal the effect of normal
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friction in New-Keynesian and monetary theory. The unemployment rate and consumption

reflect the effect in labor and goods market. By adding the contemporaneous and lagged term

of these macro variables in table 4 I show that people’s perception are more based on previous

macro variables as they may not have the data related to the contemporaneous macro status.

It is harder to determine the optimal lag interval of each macro variables as these macro

variables are persistent in themselves. The last three columns in table 5 show that it is inappro-

priate to add lagged term in third order of M2 supply and unemployment and second order of

nondurable consumption. Column 2 and column 3 imply that there is no marginal benefit in

adding more lagged terms of real interest and inflation. Because of the inertia of real interest rate

(inflation), third (fourth) order in lag rt−3 (πt−4) is significant yet this significance comes from

the smaller lagged term rt−2 (πt−3). Furthermore, because of monetary policy, the real interest

rate moves endogenously with inflation and the lagged third order term of interest rate rt−3 also

hurts the significance of inflation rate.

As I argued in main body, equation 5 is only for illustration purpose and the true formula

of status perception may contains more lagged term or even the expectation term Etgt+6. By

adding more lagged term of perception gt in model 5 I show that the maximized lag number of gt
is 1 and further lagged terms are insignificant via the column 2 to column 6 in table 6. Column

8 and column 9 in table 6 shows that more lagged term of expectation will not provide extra

explanation power on the dependent variable. While, it is more complicate to decide whether

add previous expectation in equation 5 as column 7 shows that it is significant to add it. However,

since the expectation Etgt+6 itself is based on the perception gt, its significant property is not

surprising and the key point is the marginal benefit of adding the expectation term. Column 7

shows that the coefficient of gt−1 decreases from 0.84 to 0.16 and the coefficient of expectation

term is close to that of gt−1. This means the expectation term does not introduce new explanation

power but shares with gt−1 as Et−1gt+5 is a function of gt−1. Additionally, the inflation rate,

M2 supply, unemployment rate and nondurable consumption, those macro variables, become

insignificant after adding the over-interpolation term Et−1gt+5. Therefore in baseline model 5 I

do not add the expectation term because it is not an efficient and profitable explanatory variable.

In baseline model I only use 5 macro variables to indicate the effect of macroeconomics on

household’s perception on the status of housing market because other macro variables are not

significant in explaining the perception. Table 7 provides the robustness check on adding more

macro variables into purification. Moreover, since in the last step after purification I embed the

purified gt into VAR identification, any macroeconomic effect that is missed here will be covered

later.

In addition to get the near “MA” process of news shock uEt , I also need to find out the

informative power of news since until now I do not know whether the form of uEt follows

equation 46 or 47 (or some other forms). As discussed in C.5.2, the ACF of residual in first step

of purification, uEt , implies the informative power of news and the speed of its convergence to

zero refers how many period ahead that the news is announced to household. Figure 25 shows
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that the news is informed to household 16-17 months before it realizes, roughly 5 quarters to 6

quarters. Table 8 provides more evidence to the informative power of news by using different

lead term of uEt in second regression and the column 6 to column 9 demonstrate and verify the

result in ACF of uEt .

0 3 6 9 12 15 18 21 24

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 25: ACF and PACF of uEHIM6
t

D Micro Foundation to Identification and Tests

In this section I provide some micro foundation related to fake-news identification in section

2.2 and some tests to my identification as proof to the reliability. I first provide several different

setting about news and fake news in the literature. Then I describe the standard rbc model that I

used to provide some numerical examples and micro foundation to the identification in main

page.

D.1 Literature in modeling the news and fake news

D.1.1 Perfect News

This type of “fake news” is the setting following Christiano et al. (2008), Schmitt-Grohé and

Uribe (2012), Barsky et al. (2015) and Sims (2016) in which household gets a news about a

shock ντ realized at time τ which is true for sure. However after the household reaches at time τ
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there is an identical negative unexpected shock −ν just offsetting the effect of positive shock

ντ . Comparing to the setting in equation 49, in which household gets a news about ντ via ϵ (and

totally believe it) but is misled because the observation ϵ is generated by noise w, Anderson

and Moore (2012) and Chahrour and Jurado (2018) shows that this type of “fake news” shock

is observational equivalent.27 To theoretically formulate this type of fake news shock, we can

consider the shock series

ϕt = ν0,t + ν1,t−τ (48)

where ν0,t and ν1,t−τ are iid over time and follow[
ν0,t

ν1,t

]
iid∼ N

(
0,

[
σ2
ν,0 0

0 σ2
ν,1

])

D.1.2 Noisy News

This type of news is used by Lorenzoni (2009), Baxter et al. (2011), Barsky and Sims (2012),

Blanchard et al. (2013), et al. The most intuitive one.

ϵt = νt+τ + wt (49)

where ν is the true news shock observed by agents τ periods ahead and w is the noise or fake

news shock. These two shocks are independent with each other and follow[
νt

wt

]
iid∼ N

(
0,

[
σ2
ν 0

0 σ2
w

])

D.1.3 Fake News

It is worth to notice that when we consider the dynamic cases of equation 48 and 49, everything

and every realization of ν0,t, ν1,t−τ , νt+τ and wt could happen. Given ϕt = 1, different combi-

nation such as (ν0,t = 0.5, ν1,t−τ = 0.5) or (ν0,t = 1.5, ν1,t−τ = −0.5) may all hold. Similarly

given ϵt = 1, (νt+τ = 0.5, wt = 0.5) or (νt+τ = −0.5, wt = 1.5) may all hold.

In this section what I am considering is the “pure shock” scenario or the impulse response

to a single shock. In other words, for instance, one unit realization of noisy news ϵt = 1 can

only come from νt+τ = 1 or wt = 1. It does not mean I have an implicit restriction on the shock

νt+τ and wt that νt+τwt = 0. They are iid shocks. Similarly, given one unit realization of perfect

news ν1,t−τ = 1, it can be true news ν0,t = 0 or fake news ν0,t = −1. It does not mean I have an

implicit restriction on the shock ν0,t and ν1,t−τ that corr(ν0,t, ν1,t−τ ) = −1. They are iid shocks.

27They call this representation to fundamental and belief as news representation and the representation in equation
49 as a noise representation.
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D.1.4 Fake News in Perfect News

To model a fake news in perfect news model, there is a realization of perfect news ν1,t−τ = 1 at

time t− τ and known by household, though this shock would have fundamental effect later, at

time t. Then at time t there is an unexpected contemporaneous shock ν0,t = −1 to “neutralize”

or “offset” the perfect news effect to make the fundamental stay at the beginning. The VAR

identification to this type of fake news is easy. Because all the news in this model is true or

perfectly foreseen by household, we just need to find a news shock first. Then at time τ there is a

same shock but an opposite direction. We only need to identify the response to shock once.

Sims (2016) did this identification.

D.1.5 Fake News in Noisy News

To model a fake news in noisy news model, there is a realization of observation ϵt = 1 at time t

which can either be a signal to a fundamental shock in the future, time t + τ , νt+τ = 1, or be

a noisy wt = 1, which does not have any fundamental effect to the economy. In noisy news

model given an observation ϵt = 1 household will response to their perception to the true news

νt+τ |t which is smaller than ϵt under rational expectation and we can write it as νt+τ |t = αϵt

where α < 1. There exist learning and belief updating in this type of modeling and theoretically

their is no point when household “realizes” that the news is fake. For fake news their perception

converge to zero faster than that in true news. In other words, lim
i→∞

νt+τ |t+τ+i = 0 will be faster

for fake news than true news.

To model the “awareness” of fake news, we now consider a scenario in which no more

information about shock νt+τ is delivered to household throughout time t+ 1 and time t+ τ − 1.

Therefore the belief to νt+τ of household will not be updated and νt+τ |t = νt+τ |t+1 = · · · =
νt+τ |t+τ−1. However when the news realize at time t + τ , household gets a further signal, or

information to it. In other words household can also observe ϵτt+τ = νt+τ + wτt+τ and this new

observation ϵτt+τ will update or twist the household’s belief to shock νt+τ . Therefore their exists

a value of wτt+τ which can “correct” the belief of household. Thus, νt+τ |t+τ = 0 and household

at time t+ τ realize that the news νt+τ which they known at time t is a fake news.

D.2 Numerical test to identification: A simple RBC model

D.2.1 Equations used to solve the state space model

In this subsection I describe a simple 8 variables RBC model to test my identification strategy

and show that it can successfully recover the impulse response to news and fake news shocks. I

will first introduce the DSGE model briefly and then show that my identification process works

well by comparing the identified empirical impulse response with the theoretical one.

The 8 variables RBC model is a standard one in which household provides labor and earns

labor income. Given the labor income and capital return, which is paid by firms with real
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rental rate as they rent capital to produce goods, the household decides their investment and

consumption level. In additional to these endogenous variation there is an exogenous government

spending shock following equation 50 and other 4 standard shocks such as TFP shock and

preference shock.

Household

c−σt = βRt+1c
−σ
t+1

hφt = wc−σt

Firm

Rt = α
yt
kt−1

+ δ − 1

wt = (1− α)
yt
ht

yt = Atk
α
t−th

1−α
t

Market Cleaning

yt = ct + It + log(Gt)

It = kt − (1− δ)kt−1

gt = ρggt−1 + wt−τ + wτt (50)

The household cannot know the value of Gt and wt but a signal to then

g̃t = gt + ντt

w̃t−τ = wt−τ + νt−τ

Household at time t− τ will have a perception of wt−τ given the observation w̃t−τ and I denote

it as wt−τ |t−τ = θw̃t−τ

Denote w̃it as an observation to shock wt−i. For example, a news shock wt will have effect

on G at t+ τ . At time t+ 1 household gets a new observation related to wt, w̃1
t+1, in addition to

the old observation of wt at time t w̃t. I further assume

w̃1
t−τ+1 = w̃2

t−τ+2 = · · · = w̃τ−1
t−1 = 0

holds. Therefore

wt−τ |t−τ = wt−τ |t−τ+1 = wt−τ |t−τ+2 = · · · = wt−τ |t−1
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D.2.2 Quantitative Exercise

D.2.2.1 Same perception: gνt|t = gwt|t = gν+ν
τ

t|t

Notation: Throughout exercise 1 to 3, imperfect information holds.

1) Only noisy shock νt−τ ;

2) Fake news shock. A noisy shock on wt−τ at time t− τ , νt−τ , as well as a negative noisy

shock on gt at time t, ντt ;

3) A news shock wt−τ .

0 4 8 12 16

-0.05

0

0.05

0.1

0 4 8 12 16

0

0.5

1

Figure 26: Same Perception gwt|t = gw
τ

t|t = gw+ν
τ

t|t

D.2.2.2 Same observation at time t− τ : w̃t−τ

Notation: Throughout exercise 1 to 2, imperfect information holds. In exercise 3, it is the type of

perfect news.

1) Only noisy shock νt−τ ;

2) Fake news shock. A noisy shock on wt−τ at time t− τ , νt−τ , as well as a negative noisy

shock on gt at time t, ντt ;

3) A perfect news shock wt−τ .

D.2.2.3 Same observation at time t− τ : w̃t−τ

Notation: Throughout exercise 1 to 3, imperfect information holds.

1) Only noisy shock νt−τ ;
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Figure 27: Same observation w̃t−τ

2) Fake news shock. A noisy shock on wt−τ at time t− τ , νt−τ , as well as a negative noisy

shock on gt at time t, ντt ;

3) A news shock wt−τ .

D.3 Two examples of “offset” identification (gt is exogenous w.r.t wt)

Denote the fundamental impact (i.e. housing demand variation, TFP) gt follows an AR1 process

gt = ρggt−1 + wt−τ + wτt (51)

where wt−τ is the news shock known by household at time t− τ yet has real effect at time t, wτt
is the contemporaneous shock. Because of the imperfect information, household cannot know

the exact value of news shock wt−τ but an observation to it with noisy shock

w̃t−τ = wt−τ + νt−τ

where w̃t−τ is the observation to wt−τ but may be contaminated by a noisy νt−τ which does not

have any real effect to economy. There are two scenarios that household comprehend whether

the jump in observation w̃t−τ comes from news wt−τ or noisy νt−τ which I call 1). suddenly

realization and 2). realization by learning.

88



0 4 8 12 16

-0.02

-0.01

0

0.01

0.02

0 4 8 12 16

0

0.5

1

Figure 28: Same observation w̃t−τ

D.3.1 The fundamental impact gt is observable.

When the fundamental impact gt is observable, whether the news w̃t−τ is true or fake is informed

to household via gt at time t without any delay. Since it is the impact gt that affects the economy

through which the shock wt−τ and wτt affect the economy, the household only care about the

impact value gt is wt−τ (true news) or 0 (fake news). Therefore yτi−τ−1 in equation 7 works as a

contemporaneous shock wτt offsets the true shock realized at t, wt−τ and generates gt = 0 which

is what the fake news νt−τ would do. This scenario is a standard one in literature and Christiano

et al. (2008), Schmitt-Grohé and Uribe (2012), Barsky et al. (2015) and Sims (2016) did the

similar process to generate fake news.

D.3.2 The fundamental impact gt is unobservable.

When the fundamental impact gt is unobservable, there is no other signal that household can use

to infer whether w̃t−τ comes from wt−τ or νt−τ but learn through observation gradually. In this

scenario household cannot know gt but an observation to it g̃t following

g̃t = gt + ντt
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I can show that the perception to the fundamental impact at time t, gt|t follows

gt|t = γ1gt−1|t−1 + γ2wt−τ |t−τ + γ7g̃t (52)

= γ1gt−1|t−1 + γ2wt−τ |t−τ + γ3gt−1 + γ4wt−τ + γ5ν
τ
t + γ6w

τ
t

where γ1 = ρ
[
1− z11

z11+σ2
ντ

]
, γ2 = 1 − z11

z11+σ2
ντ

, γ3 = γ7ρ and γ4 = γ5 = γ6 = γ7 = z11
z11+σ2

ντ

which is the Kalman gain. z11 can be solved from the positive root of quadratic equation

z211 +

(
σ2
ντ − ρ2σ2

ντ − σ2
w − σ2

wτ +
σ4
w

σ2
w + σ2

ν

)
z11 − σ2

ντ

(
σ2
w + σ2

wτ −
σ4
w

σ2
w + σ2

ν

)
= 0

Therefore the only difference between fake news and true news at time t is the term γ4wt−τ

which comes from the observation g̃t as it truly spur a jump in gt, though the household cannot

distinguish whether this jump is caused by realized news wt−τ or contemporaneous shock wτt
and ντt . That is the reason why these three terms share the same coefficient γ4 = γ5 = γ6, and

similarly yτi−τ−1 in equation 7 works as a contemporaneous shock wτt which offsets the effect of

true shock wt−τ at time t.

D.3.3 Proof of equation 52

Firstly I assume the law of motion of the shock gt follows

gt = ρgt−1 + wt−τ + wτt

where wt−τ is a shock realized at t− τ yet has effect on t. wτt is a contemporaneous unexpected

shock realized at time t.

The household cannot know the value of the value of shock underneath gt and wt but a signal

to then

g̃t = gt + ντt

w̃t−τ = wt−τ + νt−τ

Household at time t− τ will have a perception of wt−τ given the observation w̃t−τ and I denote

it as wt−τ |t−τ = θw̃t−τ

Denote w̃it as an observation to shock wt−i. For example, a news shock wt will have effect

on G at t+ τ . At time t+ 1 household gets a new observation related to wt, w̃1
t+1, in addition to

the old observation of wt at time t w̃t. I further assume

w̃1
t−τ+1 = w̃2

t−τ+2 = · · · = w̃τ−1
t−1 = 0
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holds. Therefore

wt−τ |t−τ = wt−τ |t−τ+1 = wt−τ |t−τ+2 = · · · = wt−τ |t−1

Above system of equation can be written as a state equation[
gt

wt−τ+1

]
=

[
ρ 1

0 0

][
gt−1

wt−τ

]
+

[
wτt

wt−τ+1

]

and observation(moment) equation[
g̃t

w̃t−τ+1

]
=

[
1 0

0 1

][
gt

wt−τ+1

]
+

[
ντt

νt−τ+1

]

For simplicity I denote yt =

[
gt

wt−τ+1

]
, ỹt =

[
g̃t

w̃t−τ+1

]
, B =

[
ρ 1

0 0

]
, H =

[
1 0

0 1

]
,

ωt =

[
wτt

wt−τ+1

]
and vt =

[
ντt

νt−τ+1

]
.

Following Hamilton (2020) we can solve the conditional expectation of the variance of

Z = Σy(t|t) follows

B
[
Z − Z (Z + Σν)

−1 Z
]
B′ + Σω = Z (53)

where I omit the observation matrix H as it is an identity matrix.

Since the second row of B is zero, the matrix D = BXB′ must follow D =

[
d 0

0 0

]
.

Plugging the matrix D back to equation 53 yidelds D + Σω = Z. Therefore we must have

Z =

[
d+ σ2

wτ 0

0 σ2
w

]
=

[
z11 0

0 σ2
w

]

By solving the equation [
z11 − σ2

wτ 0

0 0

]
=

[
ρ 1

0 0

]{[
z11 0

0 σ2
w

]

−

[
z11 0

0 σ2
w

][
(z11 + σ2

ντ )
−1

0

0 (σ2
w + σ2

ν)
−1

] [
z11 0

0 σ2
w

]}[
ρ 0

1 0

]

we can solve out z11 as the positive root of quadratic equation

z211 +

(
σ2
ντ − ρ2σ2

ντ − σ2
w − σ2

wτ +
σ4
w

σ2
w + σ2

ν

)
z11 − σ2

ντ

(
σ2
w + σ2

wτ −
σ4
w

σ2
w + σ2

ν

)
= 0

Then we can solve the law of motion of perception(conditional expectation) of yt as yt|t =
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(I − PH)Byt−1|t−1 + P ỹt where P is the Kalman gain following P = ZH ′ (HZH ′ + Σv)
−1.

D.4 Two examples of “offset” identification (gt is endogenous w.r.t wt)

Denote the fundamental impact (i.e. housing demand variation, TFP) gt follows an AR1 process

gt = ρggt−1 + wt−τ + wτt + αwt (54)

where wt−τ is the news shock known by household at time t− τ yet has real effect at time t, wτt
is the contemporaneous shock. Because of the imperfect information, household cannot know

the exact value of news shock wt−τ but an observation to it with noisy shock

w̃t−τ = wt−τ + νt−τ

where w̃t−τ is the observation to wt−τ but may be contaminated by a noisy νt−τ which does not

have any real effect to economy.

This is similar to the equation 51 and I will also discuss two scenarios that household

comprehend whether the jump in observation w̃t−τ comes from news wt−τ or noisy νt−τ which I

call 1). suddenly realization and 2). realization by learning.

D.4.1 The fundamental impact gt is observable.

When the fundamental impact gt is observable, whether the news w̃t−τ is true or fake is informed

to household via gt at time t without any delay. Similar to the exogenous case, it is the gt
that affects the economy instead of wt or w̃t in the end. Therefore as long as gt can be fully

observed, the endogenous effect of wt will not play any role based on imperfect information

here as household at time t will not care about this endogeneity but only gt. Therefore even we

change the assumption of endogenous effect and assume that gt response to the observation w̃t
or perception wt|t the result will not change as long as household perfectly knows gt.

D.4.2 The fundamental impact gt is unobservable.

I can show that the perception to the fundamental impact at time t, gt|t follows

gt|t = γ1gt−1|t−1 + γ2wt−τ |t−τ + γ2αwt|t + γ7g̃t (55)

= γ1gt−1|t−1 + γ2wt−τ |t−τ + γ2αwt|t + γ3gt−1 + γ4wt−τ + γ5ν
τ
t + γ6w

τ
t

where γ1 = ρ
[
1− z11

z11+σ2
ντ

]
, γ2 = 1 − z11

z11+σ2
ντ

, γ3 = γ7ρ and γ4 = γ5 = γ6 = γ7 = z11
z11+σ2

ντ

which is the Kalman gain. z11 can be solved from the positive root of quadratic equation

z211+

(
σ2
ντ − ρ2σ2

ντ − σ2
wτ −

(
1 + α2

) [
σ2
w − σ4

w

σ2
w + σ2

ν

])
z11−σ2

ντ

(
σ2
wτ +

(
1 + α2

) [
σ2
w − σ4

w

σ2
w + σ2

ν

])
= 0
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D.4.3 Proof of equation 55

Similar to the proof of equation 52, above system of equation can be written as a state equation gt

wt−τ+1

wt+1

 =

 ρ 1 α

0 0 0

0 0 0


 gt−1

wt−τ

wt

+

 wτt

wt−τ+1

wt+1


and observation(moment) equation g̃t

w̃t−τ+1

w̃t+1

 =

 1 0 0

0 1 0

0 0 1


 gt

wt−τ+1

wt+1

+

 ντt

νt−τ+1

νt+1



For simplicity I denote yt =

 gt

wt−τ+1

wt+1

, ỹt =

 g̃t

w̃t−τ+1

w̃t+1

, B =

 ρ 1 α

0 0 0

0 0 0

, H =

 1 0 0

0 1 0

0 0 1

, ωt =

 wτt

wt−τ+1

wt+1

 and vt =

 ντt

νt−τ+1

νt+1

.

Following Hamilton (2020) we can solve the conditional expectation of the variance of

Z = Σy(t|t) follows

B
[
Z − Z (Z + Σν)

−1 Z
]
B′ + Σω = Z (56)

where I omit the observation matrix H as it is an identity matrix.

Since the second row of B is zero, the matrix D = BXB′ must follow D =

 d 0 0

0 0 0

0 0 0

.

Plugging the matrix D back to equation 56 yidelds D + Σω = Z. Therefore we must have

Z =

 d+ σ2
wτ 0 0

0 σ2
w 0

0 0 σ2
w

 =

 z11 0 0

0 σ2
w 0

0 0 σ2
w


By solving the equation

 z11 − σ2
wτ 0 0

0 0 0

0 0 0

 =

 ρ 1 α

0 0 0

0 0 0



 z11 0 0

0 σ2
w 0

0 0 σ2
w



−

 z11 0 0

0 σ2
w 0

0 0 σ2
w


 (z11 + σ2

ντ )
−1

0 0

0 (σ2
w + σ2

ν)
−1

0

0 0 (σ2
w + σ2

ν)
−1


 z11 0 0

0 σ2
w 0

0 0 σ2
w



 ρ 1 α

0 0 0

0 0 0


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we can solve out z11 as the positive root of quadratic equation

z211+

(
σ2
ντ − ρ2σ2

ντ − σ2
wτ −

(
1 + α2

) [
σ2
w − σ4

w

σ2
w + σ2

ν

])
z11−σ2

ντ

(
σ2
wτ +

(
1 + α2

) [
σ2
w − σ4

w

σ2
w + σ2

ν

])
= 0

D.5 Identification Test

D.5.1 The fundamental impact gt is observable.
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(a) Identification to news shock R∗
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(b) Identification to fake news shock R∗
F

Figure 29: Identification Test to observable fundamental impact

D.5.2 The fundamental impact gt is unobservable.
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(a) Identification to news shock R∗
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(b) Identification to fake news shock R∗
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Figure 30: Identification Test to unobservable fundamental impact

Figure 30 shows the result of the identification test.
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E Perturbation result around the Simple Model

E.1 Proof of Proposition 2

The Lagrangian of the problem 8 could be written as

L =
∞∑
t=0

βtU i
(
cit, h

i
t

)
+

∞∑
t=0

λit

[
Rta

i
t−1 + wtε

i
t +
(
1− δH

)
pHt h

i
t−1 + πit + πH,it − cit − ait − pHt h

i
t

]
+

∞∑
t=0

µit
(
pHt h

i
t + ait

)
I omit the superscript i henceforth for convenience. Then the first order condition would be

Uct = λt (57)

−λt + µt + βEtRt+1λt+1 = 0 (58)

Uht − λtp
H
t + µtp

H
t + β

(
1− δH

)
Etλt+1p

H
t+1 = 0 (59)

To break the expectation I can rearrange the equation 59 as

Uht = (λt − µt) p
H
t −

(
1− δH

)
(λt − µt)

1

EtRt+1

Etp
H
t+1 + β

(
1− δH

) cov (λt+1, Rt+1)

EtRt+1

Etp
H
t+1

(60)

− β
(
1− δH

)
cov
(
λt+1, p

H
t+1

)
Since the interest rate here is not related to the issue we want to solve, I further assume the

exogenous TFP of non-durable goods production function is constant. Together with some

assumption on the production function of durable and non-durable goods28, Rt+1 = Rt = R and

cov (λt+1, Rt+1) = 0 will hold. Combining this assumption I log linearize equation 60 to get

Ũht =
(λ− µ)

[
pH −

(
1− δH

)
pH 1

R

]
Uh

{
λ

λ− µ
λ̃t −

µ

λ− µ
µ̃t +

pH

pH − (1− δH) pH 1
R

p̃Ht −

(61)(
1− δH

)
pH 1

R

pH − (1− δH) pH 1
R

p̃Ht+1

}
−
β
(
1− δH

)
cov

Uh
c̃ovt

where c̃ovt is the percentage derivation from steady state of cov
(
λt, p

H
t

)
28The related assumptions are described at appendix G.1.1.
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Then following Etheridge (2019) I expand Uct around its steady-state value Uc to get

Uct ≈ Uc + Ucccc̃t + Uchhh̃t

I rearrange above equation to get

Uct − Uc
Uc

= d lnuct = Ũct =
Uccc

Uc
c̃t +

Uchh

Uc
h̃t (62)

Similarly expanding Uhtaround its steady-state value Uh gives

Uht − Uh
Uh

= d lnuht = Ũht =
Uhcc

Uh
c̃t +

Uhhh

Uh
h̃t (63)

Perturbing around its steady state for equation 57 returns

Ũct = λ̃t (64)

Combining equation 61, 62, 63 and 64 I can solve out

c̃t =

(
λ

λ− µ
ηc,pH − ηc,pc

)
λ̃t −

µ

λ− µ
ηc,pH µ̃t + ηc,pH

[
1

1− (1− δH) 1
R

p̃Ht −(
1− δH

)
1
R

1− (1− δH) 1
R

p̃Ht+1

]
− Uch
U2
ch − UccUhh

β
(
1− δH

)
cov

c
c̃ovt

Then plugging back equation 57 gives

c̃t =

λ
λ−µηc,pH − ηc,pc

ηh,pc − λ
λ−µηh,ph

h̃t −
µ

λ− µ

ηch

ηh,pc − λ
λ−µηh,ph

µ̃t +
ηch

ηh,pc − λ
λ−µηh,ph

[
1

1− (1− δH) 1
R

p̃Ht −(
1− δH

)
1
R

1− (1− δH) 1
R

p̃Ht+1

]
− ηc

ηh,pc − λ
λ−µηh,ph

β
(
1− δH

)
cov

h
c̃ovt

where ηh,pc , ηh,ph , ηc,pH , ηc,pc , ηch and ηc are

ηc,pH =
uchuh

u2ch − uccuhh

1

c

ηc,pc =
uhhuc

u2ch − uccuhh

1

c

ηh,pc =
uchuc

u2ch − uccuhh

1

h

ηh,ph =
uccuh

u2ch − uccuhh

1

h
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ηch =
ucuh

u2ch − uccuhh

1

ch

ηc =
uc

u2ch − uccuhh

1

c

E.2 Derivation of the Definition of Intratemporal Elasticity of substitution
16

Firstly, following the standard procedure I first define the optimization problem

max
c,h

u(c, h)

s.t. c+ phh = y

where c is the consumption,ph is the relative price of housing services and y is the exogenous

income. The interior solution implies

ph =
uh
uc

which is used to define the intratemporal elasticity of substitution

ES = −
dln
(
c
h

)
dln (ph)

= −
dln
(
c
h

)
dln
(
Uc
Uh

)
E.3 Proof of Proposition 3

I first use the same production function 20 and 21 which I defined at section 4. Since the sample

model in section 3 is frictionless in adjusting housing and physical capital, the goods market

clearing condition should be

Y = YH + YN

= C + IN + IH

where YH = IH and YN = C + IN

Combining equation 74 and the market clearing condition of capital I can get

αYN,t + νPH
t YH,t = (rt + δ)Kt−1

Taking differential on both side of above equation around their steady state will yield

αdYN,t + νYHdP
H
t + νPHdYH,t = 0
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because the total capital Kt−1 is predetermined and rt is fixed by assumption. Further because

the amount of total housing service at time t− 1, Ht−1 is predetermined, above equation can be

rewritten to

αdYN,t + νYHdP
H
t + νPHdHt = 0

Plugging this back to goods market clearing condition will return the general equilibrium

condition of crowding-out effect

−IN ĨN,t = CC̃t +
ν

α
YHP

HP̃H
t +

ν

α
PHHH̃t

Finally the equation 15 can be obtained by plugging equation 11 into above equation.

E.4 Proof of Corollary 1

If the household utility function follows the standard CRRA form

ut =

(
ϕcγt + (1− ϕ)s1−γt

) 1−σ
1−γ

1− σ

Therefore the intratempral elasticity of substitution will be ES = 1
γ

and the intertemporal elastic-

ity of substitution will be EIS = 1
σ

and uch = ϕ(1−ϕ)(γ−σ)cγ−σ−1h−γ
[
ϕ+ (1− ϕ)(h

c
)1−γ

] γ−σ
1−γ .

Then based on the definition of relative force of substitution effect ΦH and wealth effect ΦpH the

prove process is straightforward.

E.5 Proof of Corollary 2

Iterating equation 59 forward with expectation at t on both side, I can eliminate the intra-price

term until time T + 1 with the chain rule of expectation

Uht + (µt − λt) p
H
t + β

(
1− δH

)
Etλt+1p

H
t+1 = 0

Uht+1 + (µt+1 − λt+1) p
H
t+1 + β

(
1− δH

)
Et+1λt+2p

H
t+2 = 0 (65)

Uht+2 + (µt+2 − λt+2) p
H
t+2 + β

(
1− δH

)
Et+2λt+3p

H
t+3 = 0

...
...

Uht+T + (µt+T − λt+T ) p
H
t+T + β

(
1− δH

)
Et+Tλt+T+1p

H
t+T+1 = 0

Multiple
β(1−δH)λt+i
λt+i−µt+i on both side of above equation will yield (here I only take equation 65 as

an example)

β
(
1− δH

)
λt+1

λt+1 − µt+1

Uht+1 − β
(
1− δH

)
λt+1p

H
t+1 + β

(
1− δH

) β (1− δH
)
λt+1

λt+1 − µt+1

Et+1λt+2p
H
t+2 = 0
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The last term can be rearranged to
[
β
(
1− δH

)]2
Et+1

λt+1

λt+1−µt+1
λt+2p

H
t+2 because the term

λt+1

λt+1−µt+1
only contains the term at time t+1 which is known at time t+1. Then take expectation

with the information at time t on both side of this equation to aggregate as

Uht+Et
T∑
i=1

[
β
(
1− δH

)]i [ i∏
s=1

λt+s
λt+s − µt+s

]
Uht+i+Et

[
β
(
1− δH

)]T T∏
s=1

λt+s
λt+s − µt+s

λt+T+1p
H
t+T+1 = 0

Equation 17 can be derived by take total differential on both side to above equation.

E.6 Proof of Proposition 4 and 5

The proposition 4 is a straight result of Lemma 6, 9 and 10. Similarly proposition 5 is a straight

result of Lemma 14, 16 and 17.

Lemma 1. When the utility function follows Cobb-Douglas formula 91, the monotonicity of

parameter ΦH , Φµ and ΦpH is equivalent to Φ̃H =
λ

λ−µ η̃c,pH−η̃c,pc
η̃h,pc− λ

λ−µ η̃h,ph
, Φ̃µ = µ

λ−µ
η̃ch

η̃h,pc− λ
λ−µ η̃h,ph

and

ΦpH = η̃ch
η̃h,pc− λ

λ−µ η̃h,ph
where η̃c,pH = ϕ(1 − ϕ)2(1 − σ), η̃c,pc = ϕ(1 − ϕ) [(1− ϕ)(1− σ)− 1],

η̃h,pc = ϕ2(1− ϕ)(1− σ), η̃h,pH = ϕ(1− ϕ) [ϕ(1− σ)− 1] and η̃ch = ϕ(1− ϕ).

Proof. Because the proposition 2 and equation 11 is derived around aggregate consumption

and residential asset, by plugging the marginal utility function into equation 12, 13 and 14 and

rearranging the algebraic structure, we can solve above equations.

Lemma 2. If
λ

λ−µηc,pH−ηc,pc
ηh,pc−ηh,ph

is monotonic decreasing in σ,
λ

λ−µηc,pH−ηc,pc
ηh,pc− λ

λ−µηh,ph
will be also monotonic

decreasing in σ, as long as λ
λ−µ ≥ 1 and

∂ λ
λ−µ
∂σ

> 0 hold.

Proof. Simplify the formula of ΦH to
λ

λ−µηc,pH−ηc,pc
ηh,pc−ηh,ph

. If
λ

λ−µηc,pH−ηc,pc
ηh,pc−ηh,ph

is monotonic decreasing in

σ,
∂( λ

λ−µηc,pH−ηc,pc)
∂σ

(
ηh,pc − ηh,ph

)
<

∂(ηh,pc−ηh,ph)
∂σ

(
λ

λ−µηc,pH − ηc,pc
)

holds. Further it is easy

to check that as long as
∂( λ

λ−µηc,pH−ηc,pc)
∂σ

(
ηh,pc − λ

λ−µηh,ph
)
<

∂(ηh,pc− λ
λ−µηh,ph)
∂σ

(
λ

λ−µηc,pH − ηc,pc
)

holds,
λ

λ−µηc,pH−ηc,pc
ηh,pc− λ

λ−µηh,ph
will be also monotonic decreasing in σ. Because of Lemma 1 we only need

to check
∂( λ

λ−µ η̃c,pH−η̃c,pc)
∂σ

(
η̃h,pc − λ

λ−µ η̃h,ph
)
<

∂(η̃h,pc− λ
λ−µ η̃h,ph)
∂σ

(
λ

λ−µ η̃c,pH − η̃c,pc
)

. Mean-

while
∂( λ

λ−µ η̃c,pH−η̃c,pc)
∂σ

= η̃c,pH
∂ λ
λ−µ
∂σ

+ λ
λ−µ

∂η̃
c,pH

∂σ
− ∂η̃c,pc

∂σ
= η̃c,pH

∂ λ
λ−µ
∂σ

− λ
λ−µϕ(1 − ϕ)2 +

ϕ(1 − ϕ)2 holds. Therefore as long as
∂ λ
λ−µ
∂σ

> 0, λ
λ−µ > 1, η̃c,pH < 0 and η̃h,ph < 0,

we will have
∂( λ

λ−µ η̃c,pH−η̃c,pc)
∂σ

< 0 and the inequality
∂( λ

λ−µ η̃c,pH−η̃c,pc)
∂σ

(
η̃h,pc − λ

λ−µ η̃h,ph
)
<

∂( λ
λ−µ η̃c,pH−η̃c,pc)

∂σ

(
η̃h,pc − η̃h,ph

)
will hold.

Additionally, it is easy to yield
∂(η̃h,pc− λ

λ−µ η̃h,ph)
∂σ

=
∂η̃h,pc

∂σ
− ∂η̃

h,ph

∂σ
λ

λ−µ−
∂ λ
λ−µ
∂σ

η̃h,ph = −ϕ2(1−

ϕ)+ λ
λ−µϕ

2(1−ϕ)− ∂ λ
λ−µ
∂σ

η̃h,ph >
∂(η̃h,pc−η̃h,ph)

∂σ
= −ϕ2(1−ϕ)+ϕ2(1−ϕ) as λ

λ−µ > 1,
∂ λ
λ−µ
∂σ

> 0
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and η̃h,ph < 0. Therefore by rescaling the inequality
∂(η̃h,pc− λ

λ−µ η̃h,ph)
∂σ

(
λ

λ−µ η̃c,pH − η̃c,pc
)
>

∂( λ
λ−µ η̃c,pH−η̃c,pc)

∂σ

(
η̃h,pc − λ

λ−µ η̃h,ph
)

will hold and
λ

λ−µηc,pH−ηc,pc
ηh,pc− λ

λ−µηh,ph
will be also monotonic decreas-

ing in σ.

Lemma 3. If λ
λ−µ ≥ 1 and

∂ λ
λ−µ
∂σ

> 0 hold,
λ

λ−µηc,pH−ηc,pc
ηh,pc−ηh,ph

will be monotonic decreasing in σ.

Proof. Based on Lemma 1, it is equivalent to show that
∂( λ

λ−µ η̃c,pH−η̃c,pc)
∂σ

(
η̃h,pc − η̃h,ph

)
<

∂(η̃h,pc−η̃h,ph)
∂σ

(
λ

λ−µ η̃c,pH − η̃c,pc
)

. Because
∂(η̃h,pc−η̃h,ph)

∂σ
= ∂(ϕ(1−ϕ))

∂σ
= 0, we only need to prove

∂( λ
λ−µ η̃c,pH−η̃c,pc)

∂σ
< 0. It is easy to verify that

∂( λ
λ−µ η̃c,pH−η̃c,pc)

∂σ
= η̃c,pH

∂ λ
λ−µ
∂σ

+ λ
λ−µ

∂η̃
c,pH

∂σ
−

∂η̃c,pc

∂σ
= η̃c,pH

∂ λ
λ−µ
∂σ

− λ
λ−µϕ(1−ϕ)

2+ϕ(1−ϕ)2 < 0 when η̃c,pH < 0,
∂ λ
λ−µ
∂σ

> 0 and λ
λ−µ > 0.

Lemma 4. The stationary capital over effective labor ratio will increase as σ increases in

Aiyagari-Bewley-Huggett model 8 when the housing supply is fixed and initial housing distribu-

tion over dynamic path is exogenous.

Proof. The problem 8 can be write as the instantaneous payoff function

max
∞∑
t=0

βtν (ct, at) (66)

where ν =
(cϕt h

∗1−ϕ
t )

1−σ

1−σ and h∗ = max

(
1−ϕ
ϕ

[
pH − (1− δH)p

H

R

]−1

ct,
−at
γpH

)
and the constraint

correspondence

Γ (at−1, ct, is,t, εt) =

(at, ct+1, is,t, εt) ∈

− (1− ϕ)γpH

ϕ
(
pH − (1− δH)p

H

R

)ct, a
× [0, c]×

[
−is, is

]
:

at ≤ R(Q)at−1 + w(Q)εt − pHis,t + T − ct
}

(67)

Because the aggregate housing supply is fixed, the problem is partial on remain sectors and

take the housing price as an exogenous parameter (and the general equilibrium will in the end

be pinned down through find the price that match the fixed housing supply with the housing

demand
∫
h∗g(h∗)di). Then the real rental rate R(Q) and real wage w(Q) will be a function of

real effective capital over labor ratio Q = K
AL

.

Then following the theorem 5 and proposition 1 in Acemoglu and Jensen (2015), σ is a

positive shock and Q is monotonic increasing in σ.

Lemma 5. λ
λ−µ ≥ 1, ∂

µ
λ

∂σ
> 0 and

∂ λ
λ−µ
∂σ

> 0 holds in Aiyagari-Bewley-Huggett model 8 when

the housing supply is fixed; initial housing distribution over dynamic path is exogenous and(
1−β
β

αA

) 1
α−1

L > K >
(
δ
αA

) 1
α−1 L holds.
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Proof. λ
λ−µ = 1

1−µ
λ
> 1 is obvious as λ is the marginal utility which is a positive number

in 57 and µ is the Khun-Tucker multiplier which is also positive. Following Lemma 4 we

know that when σ increases, Q will also increase. Because of the market clearing condition

AKαL1−α = C + δK we can solve ∂C
∂σ

=
∂(AKαL1−α−δK)

∂K
∂K
∂σ

=
(
αA(K

L
)α−1 − δ

)
∂K
∂σ

> 0.

Therefore the marginal utility λ is a monotonic decreasing function of σ.

Additionally, by integrating and combining equation 78 and 81 across household we can get

the relationship between aggregate Khun-Tucker multiplier and marginal utility µ = (βR− 1)λ.

Therefore as long as βR < 1 holds, the Khun-Tucker multiplier will have the opposite mono-

tonicity as λ and it is guaranteed by K <

(
1−β
β

αA

) 1
α−1

L. Hence, we can yield ∂ µ
λ

∂σ
> 0 and

∂ λ
λ−µ
∂σ

> 0.

Lemma 6. The substitution effect ΦH will decrease as relative intratemporal elasticity of

substitution higher, when the housing supply is fixed; initial housing distribution over dynamic

path is exogenous and
(

1−β
β

αA

) 1
α−1

L > K >
(
δ
αA

) 1
α−1 L holds.

Proof. Lemma 6 is a direct inference from Lemma 2, 3, 4 and 5.

Lemma 7. If ηch
ηh,pc−ηh,ph

is monotonic decreasing in σ, ηch
ηh,pc− λ

λ−µηh,ph
will be also monotonic

decreasing in σ, as long as λ
λ−µ ≥ 1 and

∂ λ
λ−µ
∂σ

> 0 hold.

Proof. Similar to Lemma 2, because of Lemma 1, given ∂η̃ch
∂σ

(
η̃h,pc − η̃h,ph

)
<

∂(η̃h,pc−η̃h,ph)
∂σ

η̃ch,

we need to check ∂η̃ch
∂σ

(
η̃h,pc − λ

λ−µ η̃h,ph
)
<

∂(η̃h,pc− λ
λ−µ η̃h,ph)
∂σ

η̃ch. Since ∂η̃ch
∂σ

= 0, we only

need to check
∂(η̃h,pc− λ

λ−µ η̃h,ph)
∂σ

η̃ch >
∂(η̃h,pc−η̃h,ph)

∂σ
η̃ch which is true because

∂(η̃h,pc− λ
λ−µ η̃h,ph)
∂σ

>
∂(η̃h,pc−η̃h,ph)

∂σ
(shown in Lemma 2) and η̃ch > 0.

Lemma 8. ηch
ηh,pc− λ

λ−µηh,ph
will be also monotonic decreasing in σ, as long as λ

λ−µ ≥ 1 and
∂ λ
λ−µ
∂σ

> 0 hold.

Proof. Following Lemma 1, we can get the monotonicity of ηch
ηh,pc− λ

λ−µηh,ph
by checking

∂η̃ch
∂σ

(
η̃h,pc −

λ

λ− µ
η̃h,ph

)
= 0 <

∂
(
η̃h,pc − λ

λ−µ η̃h,ph
)

∂σ
η̃ch

Because η̃ch > 0, we need
∂(η̃h,pc− λ

λ−µ η̃h,ph)
∂σ

> 0 to let ηch
ηh,pc− λ

λ−µηh,ph
monotonic decreasing in

σ. It is straightforward as
∂(η̃h,pc− λ

λ−µ η̃h,ph)
∂σ

= −ϕ2(1 − ϕ) − ∂ λ
λ−µ
∂σ

η̃h,ph +
λ

λ−µϕ
2(1 − ϕ) > 0

because of η̃h,ph < 0, λ
λ−µ ≥ 1 and

∂ λ
λ−µ
∂σ

> 0.
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Lemma 9. The wealth effect ΦpH will decrease as relative intratemporal elasticity of substitution

higher, when the housing supply is fixed; initial housing distribution over dynamic path is

exogenous and
(

1−β
β

αA

) 1
α−1

L > K >
(
δ
αA

) 1
α−1 L holds.

Proof. Lemma 9 is a direct inference from Lemma 5 and 8.

Lemma 10. The credit effect Φµ will increase as relative intratemporal elasticity of substitution

higher, when the housing supply is fixed; initial housing distribution over dynamic path is

exogenous ;
(

1−β
β

αA

) 1
α−1

L > K >
(
δ
αA

) 1
α−1 L holds and the aggregate Khun-Tucker multiplier

is not too large.

Proof. Based on lemma 1 we can show that
∂Φ

pH

∂σ
∼=

∂

(
µ

λ−µ
η̃ch

η̃h,pc−
λ

λ−µ η̃h,ph

)
∂σ

= µ
λ−µ

∂

(
η̃ch

η̃h,pc−
λ

λ−µ η̃h,ph

)
∂σ

+

η̃ch
η̃h,pc− λ

λ−µ η̃h,ph

∂ µ
λ−µ
∂σ

. Further because λ
λ−µ > 1, which comes from Lemma 5 and 8, the inequality

η̃ch
η̃h,pc− λ

λ−µ η̃h,ph
> η̃ch

η̃h,pc−η̃h,ph
= 1 holds. Meanwhile since µ

λ−µ = 1
λ
µ
−1

and ∂ µ
λ

∂σ
> 0 hold,

∂ µ
λ−µ
∂σ

> 0

is obvious.

As λ
λ−µ > 1 and λ > 0, we must have µ

λ−µ > 0. Combining Lemma 8, we can yield the

conclusion that
∂Φ

pH

∂σ
> 0 as long as µ is not too large to induce

∣∣∣∣∣∣∣ µ
λ−µ

∂

(
η̃ch

η̃h,pc−
λ

λ−µ η̃h,ph

)
∂σ

∣∣∣∣∣∣∣ >∣∣∣∣ η̃ch
η̃h,pc− λ

λ−µ η̃h,ph

∂ µ
λ−µ
∂σ

∣∣∣∣.
Lemma 11. The stationary capital over effective labor ratio will increase as collateral constraint

γ increases in Aiyagari-Bewley-Huggett model 8 when the housing supply is fixed and initial

housing distribution over dynamic path is exogenous.

Proof. Similar to the proof process of Lemma 4, we can reconstruct the how problem to payoff

function 66 and constraint 67. Then because the collateral constraint is endogenous, we first

need to explore the direction of
∂

(1−ϕ)γpH

ϕ

(
pH−(1−δH )

pH

R

) ct
∂γ

which I will show by induction below.

If ∂ct
∂γ

≥ − ct
γ

, then
∂

(1−ϕ)γpH

ϕ

(
pH−(1−δH )

pH

R

) ct
∂γ

= (1−ϕ)pH

ϕ
(
pH−(1−δH) p

H

R

)ct + (1−ϕ)pHγ
ϕ
(
pH−(1−δH) p

H

R

) ∂ct
∂γ

≥ 0 will

hold with a slacker constraint. Further we can show that ∂h∗

∂γ
≥ (1−ϕ)

ϕ
(
pH−(1−δH) p

H

R

) ∂ct
∂γ

. By tak-

ing derivative with respect to γ on both side of the budge constraint in 67 we know that ∂at
∂γ

≤

−
[
1 + (1−ϕ)pH

ϕ
(
pH−(1−δH) p

H

R

)
]
∂ct
∂γ

≤
[
1 + (1−ϕ)pH

ϕ
(
pH−(1−δH) p

H

R

)
]
ct
γ
< (1−ϕ)pH

ϕ
(
pH−(1−δH) p

H

R

)ct+ (1−ϕ)pHγ
ϕ
(
pH−(1−δH) p

H

R

) ∂ct
∂γ

.

However this means the decreasing speed of at is larger than the decreasing speed of collateral

constraint, which violates the meaning of collateral constraint. Therefore ∂ct
∂γ

< − ct
γ

will hold

and we can yield
∂

(1−ϕ)γpH

ϕ

(
pH−(1−δH )

pH

R

) ct
∂γ

< 0 for sure.
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Then based on the Lemma 1, Theorem 5 and Proposition 1 in Acemoglu and Jensen (2015), γ

is a positive shock and the stationary capital over effective labor ratio Q is monotonic increasing

in γ.

Lemma 12. λ
λ−µ ≥ 1, ∂

µ
λ

∂γ
> 0 and

∂ λ
λ−µ
∂γ

> 0 holds in Aiyagari-Bewley-Huggett model 8 when

the housing supply is fixed; initial housing distribution over dynamic path is exogenous and(
1−β
β

αA

) 1
α−1

L > K >
(
δ
αA

) 1
α−1 L holds.

Proof. The demonstration process is similar to Lemma 5 as γ is also a positive price follow-

ing Lemma 11 and it shares the same monotonicity as σ on µ
λ

and λ
λ−µ when the stationary

consumption C increases.

Lemma 13.
λ

λ−µηc,pH−ηc,pc
ηh,pc−ηh,ph

is monotonic decreasing in γ, as long as
∂ λ
λ−µ
∂γ

> 0 hold.

Proof. Because of Lemma 1, we only need to check whether
λ

λ−µ η̃c,pH−η̃c,pc
η̃h,pc− λ

λ−µ η̃h,ph
is monotonic de-

creasing in γ. It is easy to calculate

∂
(

λ
λ−µ η̃c,pH − η̃c,pc

)
∂γ

(
η̃h,pc −

λ

λ− µ
η̃h,ph

)
−
∂
(
η̃h,pc − λ

λ−µ η̃h,ph
)

∂γ

(
λ

λ− µ
η̃c,pH − η̃c,pc

)
=
∂ λ
λ−µ

∂γ
η̃c,pH

[(
1− λ

λ− µ

)
η̃h,pc + ϕ(1− ϕ)

]
+
∂ λ
λ−µ

∂γ
η̃h,ph

[(
λ

λ− µ
− 1

)
η̃h,pc + ϕ(1− ϕ)

]
=
∂ λ
λ−µ

∂γ
ϕ(1− ϕ)

(
η̃c,pH + η̃h,ph

)

Hence
∂

(
λ

λ−µ η̃c,pH−η̃c,pc

η̃h,pc−
λ

λ−µ η̃h,ph

)
∂γ

< 0 holds as η̃c,pH + η̃h,ph < 0 and
∂ λ
λ−µ
∂γ

> 0.

Lemma 14. The substitution effect ΦH will decrease as collateral constraint is slacker, when

the housing supply is fixed; initial housing distribution over dynamic path is exogenous and(
1−β
β

αA

) 1
α−1

L > K >
(
δ
αA

) 1
α−1 L holds.

Proof. It is a straightforward conclusion from Lemma 12 and 13.

Lemma 15. ηch
ηh,pc− λ

λ−µηh,ph
will be monotonic decreasing in γ, as long as λ

λ−µ ≥ 1 and
∂ λ
λ−µ
∂γ

> 0

hold.

Proof. Because of Lemma 1, we only need to check whether η̃ch
η̃h,pc− λ

λ−µ η̃h,ph
is monotonic de-

creasing in γ. It is easy to calculate

∂η̃ch
∂γ

(
η̃h,pc −

λ

λ− µ
η̃h,ph

)
−
∂
(
η̃h,pc − λ

λ−µ η̃h,ph
)

∂γ
η̃ch =

∂ λ
λ−µ

∂γ
η̃h,ph η̃ch

Hence
∂

(
η̃ch

η̃h,pc−
λ

λ−µ η̃h,ph

)
∂γ

< 0 holds as η̃h,ph < 0, η̃ch > 0 and
∂ λ
λ−µ
∂γ

> 0.
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Lemma 16. The wealth effect ΦpH will decrease as collateral constraint is slacker, when

the housing supply is fixed; initial housing distribution over dynamic path is exogenous and(
1−β
β

αA

) 1
α−1

L > K >
(
δ
αA

) 1
α−1 L holds.

Proof. Lemma 16 is a direct inference from Lemma 12 and 15.

Lemma 17. The credit effect Φµ will increase as collateral constraint is slacker, when the housing

supply is fixed; initial housing distribution over dynamic path is exogenous ;
(

1−β
β

αA

) 1
α−1

L >

K >
(
δ
αA

) 1
α−1 L holds and the aggregate Khun-Tucker multiplier is not too large.

Proof. Similar to Lemma 10, we can yield
∂ µ
λ−µ
∂γ

> 0 because µ
λ−µ = 1

λ
µ
−1

and ∂ µ
λ

∂γ
> 0 from

Lemma 12. Therefore as long as the aggregate Khun-Tucker multiplier is not too large to

violate
∂ µ
λ−µ
∂γ

∣∣∣∣ η̃ch
η̃h,pc− λ

λ−µ η̃h,ph

∣∣∣∣ > ∂ λ
λ−µ
∂γ

µ
λ−µϕ(1− ϕ)

∣∣η̃c,pH + η̃h,ph
∣∣, the credit effect is monotonic

increasing in γ because η̃ch
η̃h,pc− λ

λ−µ η̃h,ph
> 0 which we can induce from λ

λ−µ ≥ 1 in Lemma 12

and 1.

F Toy model with global solution

Given the budget constraint of household

c0 + a1 + p0
[
s1 − (1− δh)s0

]
= (1 +R0)a0 + w0 + πh0 + π0

c1 + a2 + p1
[
s2 − (1− δh)s1

]
= (1 +R1)a1 + w1 + πh1 + π1

c2 = (1 +R2)a2 + p2(1− δh)s2 + w2 + πh2 + π2

From utility function and FOC of household we can get the key equation

uc0

[
p0 −

1

1 +R1

(1− δh)p1

]
= us1 (68)

Then if we assume the utility function is non-separable such that

ut =

(
cνt s

1−ν
t

)1−σ
1− σ

By using the Euler equation of consumption as well as housing we can simplify equation 68 to[
p0 −

1

1 +R1

(1− δh)p1

]
=

c1
sΦ1 s

Ψ
0
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F.1 General equilibrium is important

A perturb happened at p1 will decrease c1 which in tern decrease c2, If p0, s1 and R1 not

change.(This is the total effect of substitution and income as we derive from max utility which

means from Marshallian demand function. This is pseudo-effect as we assume s1 fixed)

However this analysis is based on the assumption that p0, s1 and R1 will not change. Now

we assume s1 is not changed. Meanwhile the production is Yt = Aat so that Rt =MPK = A

which means R1 will also be fixed. Which direction of p0 changed?

The answer is that any small perturb increased happened in p1 which returns p̃1 = p1 + ε, p0
will increase relative amount to make sure p0 − (1− δh)p1 is fixed. This tells us that c1 will in

fact not change at all.29

Later we can also proof that given the decreasing return to scale production function such as

Yt = Aaαt will not change the result.

Intuition: Given p1 increased, the household want to buy more s1 at period 0. The fixed s1
will caused p0 increases a lot to even offset the wealth effect. If we assume s1 increases and p0
not change (s1supply increased to the level that just fulfill the demand and p0 does not change)

the direction of c1 will depends on the extent of increased s1 and intratemperal substitution and

intertemperal substitution). Another condition, p0 increases more than related to 1
1+R1

(1− δh)p1

is somehow less likely as an expectation causes a much higher inflation this period.

F.2 House supply is the key to determine non-durable consumption

Now we losse the assumption that s1 does not change. From last section we know that under

general equilibrium as long as the house supply does not increase, then no matter how large

changed in p1, c1 will not change anymore because p0 will adjusted one-to-one with it.

This give us the argument that the house supply or elasticity of house supply is much more

important than scholar’s focusing, as most of time we just take it as an IV in empirical research.

A right-hand shift in period 0 house demand(caused by a perturb in p1) happened, the

elasticity of house supply then determine the equilibrium changed in s. We have prove at

previous section that when e1 = 0, the increased p0 will caused c0 not change. In other words,

under the most increased p0, c0 not changed. Then assume e1 > 0, ∆p0 will decrease. LHS of

equation 68 decrease. But because the intratemporal effect is larger than intertemporal effect,

c1 and c0 will increase. In other words, the degree of elasticity of house supply determinate the

non-durable consumption.

29The proof process is simple using induction. Given p0 increases little but not enough to offset total decreased
c1. Then c1 and c0 will decreases little. Then using budget constraint, a1 and a2will relatively changed. Then to the
final period we can get a contradiction. Inversely given p0 increases a lot to result in c1 increassing, we can get
similar contradiction.
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F.3 Unseparable utility function

F.3.1 partial effect

If the utility function is

ut =

(
cνt s

1−ν
t

)1−σ
1− σ

then we will have

s
(1−ν)(1−σ)
0 c

ν(1−σ)−1
0 = βR1s

(1−σ)(1−ν)
1 c

ν(1−σ)−1
1

s
(1−ν)(1−σ)
1 c

ν(1−σ)−1
1 = βR2s

(1−σ)(1−ν)
2 c

ν(1−σ)−1
2

νs
(1−ν)(1−σ)
0 c

ν(1−σ)−1
0 p0 = βνs

(1−σ)(1−ν)
1 c

ν(1−σ)−1
1 p1(1− δh) + β(1− ν)c

ν(1−σ)
1 s

ν(σ−1)−σ
1

νs
(1−ν)(1−σ)
1 c

ν(1−σ)−1
1 p1 = βνs

(1−σ)(1−ν)
2 c

ν(1−σ)−1
2 p2(1− δh) + β(1− ν)c

ν(1−σ)
2 s

ν(σ−1)−σ
2

Then we will solve out c1, c2, s1, s2 by these four equations

c1 =

[
1

βR1

] (1−ν)(1−σ)−1
σ

{
ν

1− ν

1

β

[
p0 −

1

R1

p1
(
1− δh

)]}− (1−ν)(1−σ)
σ [

s
(1−ν)(1−σ)
0 c

ν(1−σ)−1
0

]− 1
σ

s1 =

{
ν

1− ν

1

β

s
(1−ν)(1−σ)
0 c

ν(1−σ)−1
0

c
ν(1−σ)
1

[
p0 −

1

R1

p1
(
1− δh

)]} 1
(1−ν)(1−σ)−1

=
[
s
(1−ν)(1−σ)
0 c

ν(1−σ)−1
0

]− 1
σ

{
ν

1− ν

1

β

[
p0 −

1

R1

p1
(
1− δh

)]} (1−ν)(1−σ)
(1−ν)(1−σ)−1

ν(1−σ)
σ

+ 1
(1−ν)(1−σ)−1

[
1

βR1

] ν(1−σ)
σ

c2 =

[
1

β2R1R2

] (1−ν)(1−σ)−1
σ

{
ν

1− ν

1

β2R1

[
p1 −

1

R2

p2
(
1− δh

)]}− (1−ν)(1−σ)
σ [

s
(1−ν)(1−σ)
0 c

ν(1−σ)−1
0

]− 1
σ
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s2 =

{
ν

1− ν

1

β2R1

s
(1−ν)(1−σ)
0 c

ν(1−σ)−1
0

c
ν(1−σ)
2

[
p1 −

1

R2

p2
(
1− δh

)]} 1
(1−ν)(1−σ)−1

=
[
s
(1−ν)(1−σ)
0 c

ν(1−σ)−1
0

]− 1
σ

{
ν

1− ν

1

β2R1

[
p1 −

1

R2

p2
(
1− δh

)]} (1−ν)(1−σ)
(1−ν)(1−σ)−1

ν(1−σ)
σ

+ 1
(1−ν)(1−σ)−1

[
1

β2R1R2

] ν(1−σ)
σ

Under infinite horizon we will have

ct =

[
1

βt
∏t

i=1Ri

] (1−ν)(1−σ)−1
σ

{
ν

1− ν

1

βt
∏t−1

i=1Ri

[
pt−1 −

1

Rt

pt
(
1− δh

)]}− (1−ν)(1−σ)
σ [

s
(1−ν)(1−σ)
0 c

ν(1−σ)−1
0

]− 1
σ

st =

[
1

βt
∏t

i=1Ri

] ν(1−σ)
σ

{
ν

1− ν

1

βt
∏t−1

i=1Ri

[
pt−1 −

1

Rt

pt
(
1− δh

)]} (1−ν)(1−σ)
(1−ν)(1−σ)−1

ν(1−σ)
σ

+ 1
(1−ν)(1−σ)−1 [

s
(1−ν)(1−σ)
0 c

ν(1−σ)−1
0

]− 1
σ

F.3.2 Other utility function

If the utility function is

ut = log
(
cνt s

1−ν
t

)
then no GE effect

If the utility function is

ut = log
(
cνt + s1−νt

)
still unsolvable.

F.4 Standard utility function

F.4.1 general effect

No we assume that the utility function is no longer logarithmic such that

ut =

(
cνt s

1−ν
t

)1−σ
1− σ
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Then we have two key market cleaning condition that

a2 = A1a
α
1 − c1 + (1− δ)a1 = A1a

α
1 − c0 (βR1)

1
1−ν(1−σ)

(
s0
s1

) (1−ν)(1−σ)
ν(1−σ)−1

+ (1− δ)a1

(1− δ)a2 + A2a
α
2 = c2 = c0

(
β2R1R2

) 1
1−ν(1−σ)

(
s0
s2

) (1−ν)(1−σ)
ν(1−σ)−1

Based on these two equations we can rewrite equation as

(1− δ)

[
A1 (A0a

α
0 + (1− δ)a0 − c0)

α − c0
(
βαA1 (A0a

α
0 + (1− δ)a0 − c0)

α−1) 1
1−ν(1−σ)

(
s0
s1

) (1−ν)(1−σ)
ν(1−σ)−1

+

(1− δ) (A0a
α
0 + (1− δ)a0 − c0)]+

A2

[
A1 (A0a

α
0 + (1− δ)a0 − c0)

α − c0
(
βαA1 (A0a

α
0 + (1− δ)a0 − c0)

α−1) 1
1−ν(1−σ)

(
s0
s1

) (1−ν)(1−σ)
ν(1−σ)−1

α

+

(69)

(1− δ) (A0a
α
0 + (1− δ)a0 − c0)] =

c0
{
β2α2A1A2 (A0a

α
0 + (1− δ)a0 − c0)

α−1[
A1 (A0a

α
0 + (1− δ)a0 − c0)

α − c0
(
βαA1 (A0a

α
0 + (1− δ)a0 − c0)

α−1) 1
1−ν(1−σ)

(
s0
s1

) (1−ν)(1−σ)
ν(1−σ)−1

+(1− δ) (A0a
α
0 + (1− δ)a0 − c0)]

α−1} 1
1−ν(1−σ)

(
s0
s2

) (1−ν)(1−σ)
ν(1−σ)−1

Similarly we set α = 1, equation 69 becomes

(1− δ)

[
A1 (A0a0 + (1− δ)a0 − c0)− c0 (βαA1)

1
1−ν(1−σ)

(
s0
s1

) (1−ν)(1−σ)
ν(1−σ)−1

+

(1− δ) (A0a0 + (1− δ)a0 − c0)]+

A2

[
A1 (A0a0 + (1− δ)a0 − c0)− c0 (βαA1)

1
1−ν(1−σ)

(
s0
s1

) (1−ν)(1−σ)
ν(1−σ)−1

α

+

(1− δ) (A0a0 + (1− δ)a0 − c0)] =

c0
(
β2α2A1A2

) 1
1−ν(1−σ)

(
s0
s2

) (1−ν)(1−σ)
ν(1−σ)−1

Now we can solve the c0 as
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c0 =
(A2 + 1− δ) (A1 + 1− δ) (A0a0 + (1− δ)a0)

(A2 + 1− δ)

[
A1 + 1− δ + (βαA1)

1
1−ν(1−σ)

(
s0
s1

) (1−ν)(1−σ)
ν(1−σ)−1

]
+ (β2α2A1A2)

1
1−ν(1−σ)

(
s0
s2

) (1−ν)(1−σ)
ν(1−σ)−1

=
(A2 + 1− δ) (A1 + 1− δ) (A0a0 + (1− δ)a0)

(A2 + 1− δ)

[
A1 + 1− δ + (βαA1)

1
1−ν(1−σ)

(
s0

(1−δh)s0+s̄1

) (1−ν)(1−σ)
ν(1−σ)−1

]
+ (β2α2A1A2)

1
1−ν(1−σ)

(
s0

s̄2+(1−δh)s̄1+(1−δh)2s0

) (1−ν)(1−σ)
ν(1−σ)−1

Under the GE and determined economy, c0 can only be decided by the equalized house stock.

It is intuitive as in the end because all excess profit are payback by construction companies

and consumption is mainly determined by IES & market cleaning condition. If we assume that

good market clean does not involve construction industry, the house market can only affect the

consumption via the Euler equation of asset. Here s̄2 decreases will lead p2 increase, but it

increase c0 at the same time.

F.4.2 Infinite horizon condition

The market cleaning condition will be

a1 = A0a
α
0 + (1− δ)a0 − c0

a2 = A1a
α
1 − c1 + (1− δ)a1

a3 = A2a
α
2 − c2 + (1− δ)a2

(1− δ)a∞ + A∞a
α
∞ = c∞ = c0

(
β3R1R2R3

) 1
1−ν(1−σ)

(
s0
s3

) (1−ν)(1−σ)
ν(1−σ)−1

c0 =
(A0a0 + (1− δ)a0)

∏∞
t=1 (At + 1− δ)∑T

t=1

[∏T
i=t (Ai + 1− δ)

] (
βt−1αt−1

∏t−1
i=0 Ai

) 1
1−ν(1−σ)

(
s0
st−1

) (1−ν)(1−σ)
ν(1−σ)−1

+
(
βTαT

∏T
t=0At

) 1
1−ν(1−σ)

(
s0
sT

) (1−ν)(1−σ)
ν(1−σ)−1

=
(A0a0 + (1− δ)a0)

∏T
t=1 (At + 1− δ)∑T

t=1

[∏T
i=t (Ai + 1− δ)

] (
βt−1αt−1

∏t−1
i=0 Ai

) 1
1−ν(1−σ)

(
s0∑t−1

i=0(1−δh)is̄i

) (1−ν)(1−σ)
ν(1−σ)−1

+
(
βTαT

∏T
t=0At

) 1
1−ν(1−σ)

(
s0∑T

i=0(1−δh)is̄i

) (1−ν)(1−σ)
ν(1−σ)−1

when

normalizes A0 = 1

F.5 Separable utility function

F.5.1 partial effect

c1 = c0 (βR1)
1
σ

c2 = c0
(
β2R1R2

) 1
σ

s1 =
[
p0R1 − p1(1− δh)

]− 1
ν

s2 =
[
p1R2 − p2(1− δh)

]− 1
ν
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c0
(
β2R1R2

) 1
σ +R2c0 (βR1)

1
σ +R1R2c0+

R2p1

{[
p1R2 − p2(1− δh)

]− 1
ν − (1− δh)

[
p0R1 − p1(1− δh)

]− 1
ν

}
+

R1R2p0

{[
p0R1 − p1(1− δh)

]− 1
ν − p0(1− δh)

}
=

R0R1R2a0 +R1R2 (w0 + π0) +R2 (w1 + π1) + w2 + π2

+p2(1− δh)
[
p1R2 − p2(1− δh)

]− 1
ν

Fp1 = R2

{[
p1R2 − p2(1− δh)

]− 1
ν − (1− δh)

[
p0R1 − p1(1− δh)

]− 1
ν

}
+R2p1

{
−1

ν
R2

[
p1R2 − p2(1− δh)

]− 1+ν
ν − 1

ν
(1− δh)2

[
p0R1 − p1(1− δh)

]− 1+ν
ν

}
+

(1− δh)

ν
R1R2p0

[
p0R1 − p1(1− δh)

]− 1+ν
ν +

1

ν
p2R2(1− δh)

[
p1R2 − p2(1− δh)

]− 1+ν
ν

Fc0 =
(
β2R1R2

) 1
σ +R2 (βR1)

1
σ +R1R2

F.5.2 general effect

a1 = A0a
α
0 + (1− δ)a0 − c0

a2 = A1 [A0a
α
0 + (1− δ)a0 − c0]

α − c0
[
βαA1 (A0a

α
0 + (1− δ)a0 − c0)

α−1] 1
σ

+ (1− δ) [A0a
α
0 + (1− δ)a0 − c0]

we can solve c0 by

(1− δ)a2 + A2a
α
2 = c0

(
β2α2A1A2 (a1a2)

α−1) 1
σ

which means it is predetermined.

G Equilibrium condition of the full fledged model

G.1 Focs

G.1.1 Focs in production sector

In this section I show that there exists an knife-edge equilibrium in which along the dynamic

transition path real rental rate and wage is fixed, as long as the TFP does not change.

The non-durable goods producer solve the problem

max
Kn,Ln

AnK
α
n,tL

1−α
n,t − (rt + δ)Kn,t − wLn,t
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to yield the Foc

(1− α)AnK
α
n,tL

−α
n,t = wt (70)

and

αAnK
α−1
n,t−1L

1−α
n,t = rt + δ (71)

Similarly the durable goods producer solve the problem

max
Kh,Lh

Πh = phtAhL
θ

tK
ν
h,tL

ι
h,t − (rt + δ)Kh,t − wLh

to yield the Foc

ιAhp
h
tL

θ

tK
ν
h,tL

ι−1
h,t = wt (72)

and

νAhp
h
tL

θ

tK
ν−1
h,t L

ι
h,t = rt + δ (73)

Combine equation 71 and 73 will yield

νpht YH,t
Kh,t

= rt + δ =
αYN,t
Kn,t

(74)

It is easy to check that when ι
ν
= 1−α

α
the real rental rate and wage at time t is fixed, as long

as the total capital used at time t, Kt−1 and labor Lt is fixed. I attach the proof process below.

By dividing equation 70, 71, 72 and 73 with each other I can get the relative input sharing

condition
ια

ν (1− α)

Kh,t

Kn,t

Ln,t
Lh,t

= 1

when ι
ν
= 1−α

α
holds, above equation will change to Kh,t

Kn,t
= Ln,t

Lh,t
.

Furthermore, the relative value of Kn,t and Ln,t can be pinned down with the market clearing

condition KH,t−1 = Kh,t+Kn,t and Lt = Lh,t+Ln,t. In section 3 I assume that the labor supply

is exogenous which will help to demonstrate that the relative value of Kn,t and Ln,t follows

Kn,t

Ln,t
=
KH,t−1

L

1 + Kn,t
Ln,t

1 +
Kh,t
Lh,t

Because KH,t−1 is predetermined and Kh,t
Kn,t

= Ln,t
Lh,t

, the Kn,t
Ln,t

is fixed. Therefore rt is fixed from

equation 74.

G.1.2 Focs in consumer sector

The household solve the problem

V (ht−1, xt−1, εt−1) = max
ht,xt,lt,ct

U (ct, ht, lt) + βEV (ht, xt, εt)
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s.t.ct + xt + (1− γ) pht ht =
[(
1− δh

)
pht − γRtp

h
t−1

]
ht−1 +Rtxt−1

+ (1− τ)wtltεt−1 − phtC (ht, ht−1) + Tt (75)

and

xt ≥ 0

The related Lagrange is

L = U (ct, ht, lt) + βEtV (ht, xt, εt)

+ λt
[
ct + xt + (1− γ) pht ht −

[(
1− δh

)
pht − γRtp

h
t−1

]
ht−1

−Rtxt−1 − (1− τ)wtltεt−1 + phtC (ht, ht−1)− Tt
]

+ µtxt

Then the FOCs related to consumer’s problem will be

Uc,t + λt = 0 (76)

Uh,t + βEtVh,t + λt (1− γ + Ch,t) p
h
t = 0 (77)

βEtVx,t + λt + µt = 0 (78)

Ul,t − λt(1− τ)wtεt−1 = 0 (79)

The envelop conditions are

Vh(ht−1, xt−1, εt−1) = −λt
[(
1− δh

)
pht − γRtp

h
t−1 − Cht−1 (ht, ht−1) p

h
t

]
(80)

Vx(ht−1, xt−1, εt−1) = −λtRt (81)

G.1.3 Steady State condition in production sector

G.2 Alternative Setting to Capital Producer

G.2.1 Capital Producer(Setting I)

The capital producer uses final nondurable goods YN to produce capital following the maximiza-

tion problem

max (Qt − 1) It − f (It, Kt−1)Kt−1

s.t. f (It, Kt−1) =
ψI,1
ψI,2

(
It

Kt−1

− δ

)ψI,2
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where δ is the steady-state investment rate.

By solving above optimization problem I could get the capital price as a convex function of

investment which is shown below

Qt = 1 + ψI,1

(
It

Kt−1

− δ

)ψI,2−1

So the goods market clearing condition will become

YN,t = Ct + It + f (It, Kt−1)Kt−1 + phC(h′, h)

G.2.2 Capital Producer(Setting II)

The capital producer uses final nondurable goods YN to produce capital following the maximiza-

tion problem

maxQtIt − f (It, Kt−1)Kt−1

s.t. f (It, Kt−1) =
δ
−1/ϕ

1 + 1/ϕ

(
It

Kt−1

)1+1/ϕ

+
δ

ϕ+ 1

where δ is the steady-state investment rate following δ = I
K

By solving above optimization problem I could get the capital price as a convex function of

investment which is shown below

Qt =

(
It

Kt−1δ

)1+1/ϕ

So the goods market clearing condition will become

YN,t = Ct + f (It, Kt−1)Kt−1 + phC (h′, h)

G.2.3 Capital Producer(Setting III)

The capital producer uses final nondurable goods YN to produce capital following the maximiza-

tion problem

maxQtf (It, Kt−1)Kt−1 − It

s.t. f (It, Kt−1) =
δ
1/ϕ

1− 1/ϕ

(
It

Kt−1

)1−1/ϕ

− δ

ϕ+ 1

where δ is the steady-state investment rate.
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By solving above optimization problem I could get the capital price as a convex function of

investment which is shown below

Qt =

(
It

Kt−1δ

)1−1/ϕ

and the law of motion of capital will become

Kt = (1− δ)Kt−1 + f (It, Kt−1)Kt−1

The goods market clearing condition will become

YN,t = Ct + It + phC (h′, h)

G.2.4 Capital Producer(Setting IV)

The capital producer uses final nondurable goods YN to produce capital following the maximiza-

tion problem

maxEt

∞∑
τ=t

βτ−tΛt,t+τ {(Qτ − 1) Iτ − f (Iτ , Iτ−1) Iτ}

s.t. f (Iτ , Iτ−1) =
ψI,1
ψI,2

(
Iτ
Iτ−1

− 1

)ψI,2
By solving above optimization problem I could get the capital price as a convex function of

investment which is shown below

Qt = 1 +
ψI,1
ψI,2

(
It
It−1

− 1

)ψI,2
+ ψI,1

(
It
It−1

− 1

)ψI,2−1
It
It−1

−

EtβΛt,t+1ψI,1

(
It+1

It
− 1

)ψI,2−1(
It+1

It

)2

So the goods market clearing condition will become

YN,t = Ct + It + f (It, It−1) It−1 + phC(h′, h)

H Numerical solution

H.1 Calibration to full fledged model

All the parameters related to production sector are selected from literature. The depreciation

rate of physical capital is 0.03 which implies 12% annually. The depreciation rate of housing

service is estimated from data which is constructed by Rognlie et al. (2018) as my model in
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supply side is too simple to use the gross GDP in NIPA. Therefore I use the GDP constructed by

Rognlie et al. (2018) which is more suitable to this simple supply side. The depreciation rate

of housing service is roughly 1.9% quarterly which is in line with Kaplan et al. (2020). The

relative share of production factors in construction function ν, θ and ι comes from Favilukis et al.

(2017). The last three parameters, exogenous land supply, TFP in production function and TFP

in construction function, together with other parameters in household problem, are selected to

match the real gross rate, labor demand, liquid asset over GDP and iliquid asset over GDP.

Table 9: Parameter Values from Calibration

Parameter Value Description
δ 0.03 Depreciation rate of physical capital

δh 0.01873 Depreciation rate of housing service

α 0.36 Capital share in production function

ν 0.27 Capital share in construction function

ι 0.36 Labor share in construction function

θ 0.1 Land share in construction function

L 4.95 Land supply

An 0.67 TFP in production function

Ah 2.75 TFP in construction function

Table 10: Presetted Parameter Values

Parameter Value Description
σL 0 Depreciation rate of physical capital

σmL4 ∞ Depreciation rate of housing service

σmϕ4
∞ Capital share in production function

mL
1 1 Capital share in construction function

mL
2 1 Labor share in construction function

mL
3 1 Land share in construction function

mL
4 0 Land supply

mϕ
1 1 TFP in production function

mϕ
2 1

mϕ
3 1

mϕ
4 0 TFP in construction function
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H.2 Bayesian estimation to full fledged model

I use Bayesian method to estimate the parameters that control the impulse response and transition

path such as the AR1 coefficients ρia, the observation matrix H and related covariance matrix

ηη′ and ϵϵ′. Since the data process itself is not stationary it is not appropriate to use the

full-information Bayesian and if we used the statistic method to detrend such as first-order

difference and hp filter, the Bayesian update rule would not be further used and the posterior

p
(
θ|Y T

)
∝ p

(
Y T |θ

)
p (θ) would be unsolvable as p

(
Y T |θ

)
was unknown. Therefore I use

GMM to match the moments in data and model to proceed the estimation. In this subsection I

first introduce the moments I used to match the data and then explain the Bayesian estimation

strategy in detail.

H.2.1 Moments Selection and Theoretical moments after filter

I impose hp filter on the data and calculate moments from the cyclical elements such as the

autocovariance of output, standard derivation of output, physical investment, new constructed

residential estate, relative housing price and their related covariance. The covariance between

output and physical investment cov(yt, It) captures the general equilibrium Y = C+I . Similarly

the covariance between residential investment and physical investment cov(IHt , It) captures the

crowded-out effect. The covariance between new constructed residential estate and relative

housing price capture the demand and supply equilibrium in the housing market. All these eight

moments are summarized in vector g(·) = Ψ following

Ψ =
[
ϱ′m σ′

m,m σ′
m,n

]′
where ϱm is the vector that contains the autocovariance moments (ρim represents the AR(i)’s

coefficient of variable m)

ϱm =
[
ρ1y ρ1c ρ1I ρ1IH ρ1pH ρ1Q

]′
σm,m is the vector that contains the standard derivation moments

σm,m =
[
σy σc σI σpH σQ

]′
σm,n is the vector that contains the covariance moments of variables ϕv =

[
y c I IH pH Q R

]′
σm,n =

[
σy,c σy,I σy,IH σy,pH σy,Q σy,R σc,IH · · · σQ,R

]′
Moreover I solve the theoretical moments from model after hp filter by switching to frequency
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domain and the spectrum. After some algebra I can solve the covariance matrix

E
[
ỸtỸt−1

]
=

∫ π

−π
gHP(ω)eiωkdω

where Ỹt =
[
s′t s′t|t Ec′t+1

]′
in equation 102. The spectral density of HP filter gHP(ω)

follows gHP(ω) = h2(ω)g(ω). h(ω) = 4λ(1−cos(ω))2

1+4λ(1−cos(ω))2
is the transfer function of HP derived from

King and Rebelo (1993). The spectral density of state and control variables Yt is solved by

g(ω) =

 Ins 0ns,nq

M21e
−iω D2

0nq,ns Inq

 f(ω)[ Ins M ′
21e

iω 0ns,nq

0nq,ns D′
2 Inq

]
= Wf(ω)W ′ (82)

f(ω) =
1

2π

[
(Ins −M11e

−iω)
−1
D1

Inq

]
Σ
[
D′

1

(
Ins −M ′

11e
iω
)−1

, Inq

]
(83)

where ns is the number of state variables and nq is the number of shocks. M and D come from

the policy function 108 and Σ is the covariance matrix of shocks. Because I assume the shock

term Ξt in system 102 follows standard normal distribution and all the covariance terms are

absorbed in η and ϵ, Σ in equation 83 is an identity matrix.

W.L.O.G, I assume the shock Ξt in equation 108 is independent with each other and all the

covariance term is stored in response D. Therefore the covariance term Σ in equation 83 is an

identity matrix and the equation can be further simplified as

f(ω) =
1

2π

[
(Ins −M11e

−iω)
−1
D1D

′
1 (Ins −M ′

11e
iω)

−1
(Ins −M11e

−iω)
−1
D1

D′
1 (Ins −M ′

11e
iω)

−1
Inq

]

Then equation 82 becomes

g(ω) =
1

2π

 (Ins −M11e
−iω)

−1
D1D

′
1 (Ins −M ′

11e
iω)

−1
(Ins −M11e

−iω)
−1
D1

M21e
−iω (Ins −M11e

−iω)
−1
D1D

′
1 (Ins −M ′

11e
iω)

−1
M21e

−iω (Ins −M11e
−iω)

−1
D1

D′
1 (Ins −M ′

11e
iω)

−1
Inq

W ′

+
1

2π

 0 0

D2D
′
1 (Ins −M ′

11e
iω)

−1
D2

0 0

[ Ins M ′
21e

iω 0ns,nq

0nq,ns D′
2 Inq

]
W ′

=
1

2π
(Υ1 +Υ2 +Υ3 +Υ4)

where
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Υ1 =

 (Ins −M11e
−iω)

−1
D1D

′
1 (Ins −M ′

11e
iω)

−1
(Ins −M11e

−iω)
−1
D1D

′
1 (Ins −M ′

11e
iω)

−1
M ′

21e
iω (Ins −M11e

−iω)
−1
D1

M21e
−iω (Ins −M11e

−iω)
−1
D1D

′
1 (Ins −M ′

11e
iω)

−1
M21 (Ins −M11e

−iω)
−1
D1D

′
1 (Ins −M ′

11e
iω)

−1
M ′

21 M21e
−iω (Ins −M11e

−iω)
−1
D1

D′
1 (Ins −M ′

11e
iω)

−1
D′

1 (Ins −M ′
11e

iω)
−1
M ′

21e
iω Inq



Υ2 =

 0 (Ins −M11e
−iω)

−1
D1D

′
2 0

0 M21e
−iω (Ins −M11e

−iω)
−1
D1D

′
2 0

0 D′
2 0



Υ3 =

 0 0 0

D2D
′
1 (Ins −M ′

11e
iω)

−1
D2D

′
1 (Ins −M ′

11e
iω)

−1
M ′

21e
iω D2

0 0 0



Υ4 =

 0 0 0

0 D2D
′
2 0

0 0 0


To further decrease the computation burden it is easy to show that M21 (Ins −M11e

−iω)
−1

=

eiωM21UM (eiωIns − TM)
−1
U ′
M where M11 = UMTMU

′
M is prederived from Schur decomposi-

tion.

H.2.2 Bayesian GMM

H.2.2.1 Moment Matching: Imperfect Information Bayesian Estimation

Following Rotemberg and Woodford (1997), Christiano et al. (2005) and Barsky and Sims

(2012), to construct the asymptotic properties of the moments which I select to conduct the

Bayesian GMM, I first construct the auxiliary variable ψt

ψt =
[
yt ct It It,H pt,H Qt Rt ytyt−1 ctct−1 · · · y2t c2t · · · p2t,H ytct ytIt · · · QtRt

]′
Additionally I define the moment function as g(·) which yields the moments

g(ψt) = Ψ
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If the sample estimation of ψt is ψ̂ the moment function is well defined as

g(ψ̂) =



ψ̂ytyt−1 − ψ̂2
y

ψ̂ctct−1 − ψ̂2
c

...√
ψ̂y2 − ψ̂2

y√
ψ̂c2 − ψ̂2

c

...

ψ̂yc − ψ̂yψ̂c

ψ̂yI − ψ̂yψ̂I
...

ψ̂QR − ψ̂Qψ̂R


Therefore the Jacobian of moment function Γg(·) should be

Γg(ψ̂) =
∂g

∂ψ
=



−2µy 0 · · · 1 0 0 0 · · · 0 0 0 0 0 0

0 −2µc 0 · · · 1 0 0 0 · · · 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...

−µy
σy

0 · · · 0 0 1
2σy

0 · · · 0 0 0 0 0 0

0 −µc
σc

0 · · · 0 0 1
2σc

0 · · · 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 −µQ
σQ

0 · · · 0 0 1
2σQ

0 · · · 0 0 0

−µc −µy 0 0 · · · 0 0 0 0 1 0 · · · 0 0

−µI 0 −µy 0 0 · · · 0 0 0 0 1 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 · · · −µR −µQ 0 · · · 0 0 0 · · · 1


By applying the Delta Method the sample estimation of moments Ψ̂ has the following asymptotic

properities √
T
(
Ψ̂−Ψ

)
d→ N

(
0,ΓgΣΓ

′
g

)
where Σ is the LRV of ψt.

H.2.2.2 Full Information Bayesian Estimation

There are 38 parameters to be estimated via bayesian method and most of them govern the

dynamic transition path of the economy. Firstly, six out of thirty-eight parameters are the AR1

coefficient of the shocks’ process: ρAn and ρAh relate to the TFP of output and construction

sector; ρL and ρLg relate to the supply side of the housing market, land supply, and they are
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similar to the form defined in equation 93; ρϕ and ρϕg relate to the demand side of the housing

market, preference on residential asset, and they are just the form defined in equation 93. Then

eight parameters correspond to the standard derivation of above six shock series with two news

shock on supply and demand side of the housing market. Additionally eight parameters, in

supply and demand side of the housing market, associate with the observation or imperfect

information process (H in equation 96) and another eight parameters pertain to the standard

derivation of these observation noisy (ϵ in equation 96). Then one parameter affects the capital

price, which is in the capital production function (ψI in equation 22). In the end the left seven

parameters are the standard derivation of measure error of the seven data series that I used to

estimate: output, nondurable consumption, physical investment, new construction, housing price,

stock price and real interest rate. The whole estimation process is overestimated as there are 38

parameters in model but 77 moments (49 in coefficient matrix and 28 in the covariance matrix of

residual).

Following Smets and Wouters (2007) and Rudebusch and Swanson (2012), I use the standard

random walk metropolis-hastings (RWMH) algorithm to conduct the bayesian estimation and

the data I used are per capita series to get a stationary time series. However most of the data does

not pass the unit-root test and thus I further use the first order difference method to detrend the

data, because I do not introduce the trend (growth) elements in the model. Moreover, to ensure

the compatible between the model and data, I rearrange the state equation 108 of the model to[
Ỹt

Ỹt−1

]
=

[
M 0

I 0

][
Ỹt−1

Ỹt−2

]
+D

[
Ξt

0

]
(84)

Therefore the measurement equation should change to

Yt =
[
I −I

] [ Ỹt

Ỹt−1

]
+ Ξt (85)

The likelihood function can be solved from the Kalman Filter from the state equation 84 and

measurement equation 85. Based on the recommendation of Herbst and Schorfheide (2016), I

use gradient based MLE method to proceed the estimation to get the asymptotic variance of the

parameters (the inverse Hessian of the likelihood function) and the prior mean of the parameters.

Following Schmitt-Grohé and Uribe (2012), Blanchard et al. (2013) and Christiano et al. (2014)

the prior standard derivations that pertain to AR1 coefficient are 0.1 and others that associate

with variance are 1.
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Table 11: Bayesian Estimation

Parameter Distribution
Prior Posterior

mean s.d. mean

ρAn Beta 0.5 0.2

ρAh Beta 0.5 0.2

ρL Beta 0.5 0.2

ρϕ Beta 0.5 0.2

σAn InvGamma 0.1 1

σAh InvGamma 0.1 1

σLg InvGamma 0.1 1

σϕ InvGamma 0.1 1

σmL1 InvGamma 0.1 1

σmL2 InvGamma 0.1 1

σmL3 InvGamma 0.1 1

σmϕ1
InvGamma 0.1 1

σmϕ2
InvGamma 0.1 1

σmϕ3
InvGamma 0.1 1

ϕI Gamma 1.728 1

H.3 Solution method to simple model

H.3.1 Reconstruction

Similar to the section H.7.1, I replace the saving at by the effective asset holding xt which

follows xt = γpHt ht + at. Then the problem 8 change to

max
ct,ht,xt

∞∑
t=0

βtU (ct, ht) (86)

s.t.

ct + xt + (1− γ) pHt ht = Rtxt−1 + wtεt +
[
(1− δH)pHt − γRtp

H
t−1

]
ht−1 + Tt (87)

xt ≥ 0

The related FOCs 57, 58 and 59 will become

Uct = λt (88)
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−λt + µt + βEtRt+1λt+1 = 0 (89)

Uht − (1− γ)λtp
H
t + βEtλt+1

[
(1− δH)pHt+1 − γRt+1p

H
t

]
= 0 (90)

Similar to the full fledged model, I assume the utility function U (ct, ht) follows the Cobb-

Douglas formula

U (ct, ht) =

(
cϕt h

1−ϕ
t

)1−σ
1− σ

(91)

Since I assume there is no aggregate shock existing in the simple model, Rt+1, pHt+1 and pHt can

be perfectly expected. Therefore for non-constrained household there exists a static relationship

between ct and ht from the combining of equation 88, 89 and 90

ct =
ϕ

1− ϕ
ht

[
pHt − (1− δH)

pHt+1

Rt+1

]
(92)

When the collateral constraint is binding, it is worth to notice that the two FOC 58 and 89 have

the same form. Therefore the Khun-Tucker multiplier is the same between the two model, the

original one and the reconstructed one. To sum up, the problem 86 degenerates to a one state xt
problem which can be solved easily by value function iteration.

H.3.2 Solution Steps

Since in this simple problem I use Cobb-Douglas utility function where intratemporal elasticity

of substitution between housing service and non-durable consumption is constant at 1, the

consumption and housing servicing is homogeneous in degree 1 (linear) in the frictionless

scenario. Therefore it is solvable to use value function iteration method.

1. Take an initial guess about value function V (h−1, x−1, ε−1) =
∑∞

t=0 β
tU (ct, ht). If h0,

x0 is still on grid I can remove the expectation with Ṽ (h0, x0, ε−1) = E0V (h0, x0, ε0) =

ΠV (h0, x0, ε0) as h0, x0 is determined at time 0.

2. If the budget constraint is not binding, equation 92 will always hold. Therefore given an

initial guess of h0(h−1, x−1, ε−1), I can get the unique mapping x0(h0, h−1, x−1, ε−1) and

c0(h0, h−1, x−1, ε−1) through budget constraint 87 and equation 92. Then it is easy to find

huc0 (h−1, x−1, ε−1) = argmax
h0

U [c0(h0, h−1, x−1, ε−1), h0]+βṼ [h0, x0(h0, h−1, x−1, ε−1), ε−1]

where Ṽ [h0, x0(h0, h−1, x−1, ε−1), ε−1] can be solved from linear interpolation on the

on-grid value Ṽ (h0, x0, ε−1) in last step. I also define and save the value

RHSUC = maxU [c0(h0, h−1, x−1, ε−1), h0] + βṼ [h0, x0(h0, h−1, x−1, ε−1), ε−1]

.
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3. If the budget constraint is binding, the Euler equation does not hold anymore. Therefore

the mapping between h0 and c0 is no longer useful. However the effective wealth is

known as now the household is constrained so x0(h−1, x−1, ε−1) = 0. Given any guess

of h0(h−1, x−1, ε−1) the consumption c0(h0, h−1, x−1, ε−1) can be solved from budget

constraint 87. Then it is easy to find

hc0(h−1, x−1, ε−1) = argmax
h0

U [c0(h0, h−1, x−1, ε−1), h0] + βṼ [h0, 0, ε−1]

where Ṽ [h0, 0, ε−1] can be solved from linear interpolation on the on-grid value Ṽ (h0, 0, ε−1)

in step 1. I also define and save the value

RHSC = maxU [c0(h0, h−1, x−1, ε−1), h0] + βṼ [h0, 0, ε−1]

.

4. Because the result of constrained optimization in convex function optimization problem

is always inferior than that of unconstrained optimization, the updated value function

V (h−1, x−1, ε−1) will follows

V (h−1, x−1, ε−1) =

RHSUC xuc0 ≥ 0

RHSC xc0 < 0

Update the value function and go back to step 1.

H.4 Solution method to simple model with separable utility function

H.4.1 Reconstruction and new FOCs

Change the utility function from 91 to the separable utility function

U (ct, ht) =
ϕc1−σt + (1− ϕ)h1−σt

1− σ

Then the mapping from ct to ht under the frictionless scenario changes to

ct =

(
ϕ

1− ϕ

) 1
σ
[
pHt − (1− δH)

pHt+1

Rt+1

] 1
σ

ht

H.5 Expected news shock

Then denote the “fundamental” variable Xt as

Xt =
[
log Φi

t log Φi
g,t ε8t ε8t−1 ε8t−2 ε8t−3 ε8t−4 ε8t−5 ε8t−6 ε8t−7

]′
(93)
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Then Xt follows

Xt = BsXt−1 + ηwt (94)

where

Bs =



ρa 1 0 0 0 · · · 0 0 0

0 ρg 0 0 0 · · · 0 0 1

0 0 0 0 0 · · · 0 0 0

0 0 1 0 0 · · · 0 0 0

0 0 0 1 0 · · · 0 0 0
...

...
...

... . . . · · · 0 0 0

0 0 0 0 0 · · · 0 1 0


10×10

η =



σa 0 0

0 σg 0

0 0 σ8
g

...
...

...

0 0 0


10×3

wt =

 wat

wgt

w8
t


However household can only observe the variable X̃t such that

X̃t =
[
log Φ̃t log Φ̃g,t ε̃8t ε̃8t−1 ε̃8t−2 ε̃8t−3 ε̃8t−4 ε̃8t−5 ε̃8t−6 ε̃8t−7

]′
(95)

which follows

X̃t = HXt + ϵv (96)

where

H =

[
H11

3×3 03×5

05×3 m4I5×5

]

H11 =

 m1 0 0

0 m2 0

0 0 m3


m ∈ R+
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ϵ =



σsa 0 0 · · · 0

0 σsg 0 · · · 0

0 0 σsg1 · · · 0
...

...
... . . . ...

0 0 0 · · · σsg8


10×10

vt =



vat

vgt

vg1t
...

vg8t


H.6 Kalman Filter

Even though the household can successfully observe At at time t, he cannot observe gt at time

t. This make the household harder to estimate the At+1 as Etlog(At+1) = ρa logAt + Et log gt.

Thus we need get gt|t to get the expectation of At+1. Based on the Kalman filter and equation 94

and 96, we can solve out the perception of gt by household as30

Xt+1|t+1 = AsXt|t + P sX̃t+1 (97)

where P s is the Kalman gain and As = (I − P sH)Bs

H.7 Model Reconstruction and Solution Process

The computation process follows the augmented endogenous gird method which is proposed by

Auclert et al. (2021).

H.7.1 Preliminaries

I define the risk-adjusted expected value function as

Ṽ (ht, bt, εt−1) = βEV (ht, bt, εt)

Therefore the marginal risk-adjusted expected value should be

Ṽh(ht, bt, εt−1) = βEVh(ht, bt, εt)

and

Ṽb(ht, bt, εt−1) = βEVb(ht, bt, εt)

30For the reference Hamilton (2020) provides rigorous proof to this equation.
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To simplify the computation process, I further define the auxiliary variable xt as t he effective

asset holding which follows xt = γpht ht + bt. Therefore the budget constraint 9 becomes

ct + xt + (1− γ) pht ht =
[(
1− δh

)
pht − γRtp

h
t−1

]
ht−1 +Rtxt−1

+ (1− τ)wtltεt−1 − phtC (ht, ht−1) + Tt (98)

Correspondingly collateral constraint becomes

xt ≥ 0

H.7.2 Decision Problems

The household solve the problem

V (ht−1, xt−1, εt−1) = max
ht,xt,lt,ct

U (ct, ht, lt) + βEV (ht, xt, εt)

s.t.ct + xt + (1− γ) pht ht =
[(
1− δh

)
pht − γRtp

h
t−1

]
ht−1 +Rtxt−1

+ (1− τ)wtltεt−1 − phtC (ht, ht−1) + Tt

and

xt ≥ 0

H.7.3 Solve step

1. Take the initial guess to marginal value function at time t + 1 as Vh(ht, xt, εt) and

Vx(ht, xt, εt)

2. Solve the expectation problem on marginal value function to get risk-adjusted expected

value function

Ṽh(ht, xt, εt−1) = βΠVh(ht, xt, εt)

and

Ṽx(ht, xt, εt−1) = βΠVx(ht, xt, εt)

3. Assuming the collateral constraint is unconstrained, I can combine equation 76, 77 and 78

to get

F (ht, xt, εt−1, ht−1) =
Uh,t + Ṽh

pht Ṽx
− (1− γ + Ch,t) = 0

Further because the unseparable utility function U (ct, ht, lt) is homogeneous between ct
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and ht, Uh,t can be written as a function of Ṽx

Uh,t = (1− ϕ)

(
Ṽx
ϕ

) ϕ(1−σ)
ϕ(1−σ)−1

h
ϕ(1−ϕ)(1−σ)2

1−ϕ(1−σ) +(1−ϕ)(1−σ)−1

t (99)

This can be used to solve ht (ht−1, xt, εt−1). The related mapping weight can also be used

to map Ṽx(ht, xt, εt−1) into Ṽx(ht−1, xt, εt−1). Then c (ht−1, xt, εt−1) and l (ht−1, xt, εt−1)

can be solved straightforward from

c (ht−1, xt, εt−1) =

(
Ṽx(ht−1, xt, εt−1)

ϕ

) 1
ϕ(1−σ)−1

ht (ht−1, xt, εt−1)
(1−ϕ)(1−σ)
1−ϕ(1−σ) (100)

and

l (ht−1, xt, εt−1) =

(
−ϕ(1− τ)wtεt−1

κ

) 1
ψ

c (ht−1, xt, εt−1)
ϕ(1−σ)−1

ψ ht (ht−1, xt, εt−1)
(1−ϕ)(1−σ)

ψ

(101)

4. Then the effective asset holding can be solved from budget constraint

xt−1 (ht−1, xt, εt−1) =
c (ht−1, xt, εt−1) + xt + (1− γ) pht ht (ht−1, xt, εt−1)

Rt

−
[(
1− δh

)
pht − γRtp

h
t−1

]
ht−1 + (1− τ)εt−1wtl (ht−1, xt, εt−1) + Tt

Rt

+
phtC (ht (ht−1, xt, εt−1) , ht−1)

Rt

Now invert above function xt−1 (ht−1, xt, εt−1) to xt (ht−1, xt−1, εt−1). After this invert

process the function ht (ht−1, xt, εt−1) can be mapped to ht (ht−1, xt−1, εt−1) by the func-

tion xt (ht−1, xt−1, εt−1).

5. Assuming the collateral constraint is constrained, I further define the relative Khun-Tucker

multiplier as µ̃t(ht, 0, εt−1) =
µt

Ṽx(ht,0,εt−1)
so that equation 78 becomes

Uc,t = (1 + µ̃t) Ṽx

Therefore the equation 99 changes to

Uh,t = (1− ϕ)

(
(1 + µ̃t) Ṽx

ϕ

) ϕ(1−σ)
ϕ(1−σ)−1

h
ϕ(1−ϕ)(1−σ)2

1−ϕ(1−σ) +(1−ϕ)(1−σ)−1

t

127



Similar to the process in step 3 this can be used to solve ht (ht−1, µ̃t, εt−1) from

F (ht, µ̃t, εt−1, ht−1) =
1

1 + µ̃t

Uh,t + Ṽh

pht Ṽx
− (1− γ + Ch,t) = 0

and equation 100 changes to

c (ht−1, µ̃t, εt−1) =

(
(1 + µ̃t) Ṽx(ht, 0, εt−1)

ϕht (ht−1, µ̃t, εt−1)
(1−ϕ)(1−σ)

) 1
ϕ(1−σ)−1

and corresponded optimal labor supply l (ht−1, µ̃t, εt−1) from equation 101.

6. The effective asset holding under the constraint scenario can be solved from budget

constraint

xt−1 (ht−1, µ̃t, εt−1) =
c (ht−1, µ̃t, εt−1) + (1− γ) pht ht (ht−1, µ̃t, εt−1)

Rt

−
[(
1− δh

)
pht − γRtp

h
t−1

]
ht−1 + (1− τ)εt−1wtl (ht−1, µ̃t, εt−1) + Tt

Rt

+
phtC (ht (ht−1, µ̃t, εt−1) , ht−1)

Rt

Now invert above function xt−1 (ht−1, µ̃t, εt−1) to µ̃t (ht−1, xt−1, εt−1). After this invert

process the function ht (ht−1, µ̃t, εt−1) can be mapped to hct (ht−1, xt−1, εt−1).31 It is worth

to notice that xct (ht−1, xt−1, εt−1) is already known such that xct (ht−1, xt−1, εt−1) = 0.

7. Compare xt (ht−1, xt−1, εt−1) and xct (ht−1, xt−1, εt−1) to select the largest elemental value.

Then replace the unconstrained optimal housing service choice ht (ht−1, xt−1, εt−1) with

hct (ht−1, xt−1, εt−1). Then for each grid point solve the nonlinear equation

c (ht−1, xt−1, εt−1) =
[(
1− δh

)
pht − γRtp

h
t−1

]
ht−1 +Rtxt−1

+ (1− τ)wtεt−1

(
−ϕ(1− τ)wtεt−1

κ

) 1
ψ

c (ht−1, xt−1, εt−1)
ϕ(1−σ)−1

ψ ht (ht−1, xt−1, εt−1)
(1−ϕ)(1−σ)

ψ

− phtC (ht (ht−1, xt−1, εt−1) , ht−1) + Tt

− xt (ht−1, xt−1, εt−1)− (1− γ) pht ht (ht−1, xt−1, εt−1)

Then update the marginal value function through the envelop condition 80 and 81

Vh(ht−1, xt−1, εt−1) = Uc,t
[(
1− δh

)
pht − γRtp

h
t−1 − Cht−1 (ht, ht−1) p

h
t

]
31Here I use c in superscript as the notation to “constrained”.
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Vx(ht−1, xt−1, εt−1) = Uc,tRt

H.8 Solve Rational Expectation model with imperfect information

Following Baxter et al. (2011) and Hürtgen (2014), I first solve perfect information model

AYt = BYt−1 + CpseoΞt (102)

where Yt =
[
s′t Ec′t+1

]′
where st is the vector of state variable and ct is the vector of

control variable. Ξt is the vector of pseudo-shock and composed with fundamental shock wt
and noisy shock vt such that Ξt =

[
w′
t v′t

]′
. The effect of shock Cpseo naturally becomes

Cpseo =

[
P sHη

P sϵ

]
where P s is the Kalman gain from equation 97. This linear model can be

easily solved by Klein (2000) to yield Yt = PYt−1 +QΞt. Take partition on P as

P =

[
P11 P12

P21 P22

]

It is widely known that to solve the linear rational expectation model we pre-impose the restriction

that P12 = 0 and P22 = 0. Further because of the holding of CEQ under first-order perturbation

method, the policy function of control variables ct will follow

ct = P21st−1|t−1 +Qw
2 wt +Qv

2vt (103)

where Qw
2 and Qv

2 are subset of Qw and Qv which comes from Q such that Q =
[
Qw Qs

]
.

Plug equation 103 into partition of equation 102 but replace CpseoΞt with true fundamental shock

process ηwt such that

A11st + A12Ect+1 = B11st−1 +B12ct + ηwt

A11st + A12P21st|t = B11st−1 +B12

(
P21st−1|t−1 +Qw

2 wt +Qv
2vt
)
+ ηwt (104)

It is worth to notice that here I use the first ns linear equations of equation 102 which is not

free of choice yet a simplification in notation. The basic purpose now is to solve the law of

motion of perceived state variable st|t therefore we need ns “core” linear equations related to

state variables to pin down ns state variable st|t. The word “core” refers to those equations

that affect state variables directly, or more specifically, the law of motion of state variables.

For instance, if we want to select one out of two linear equations in 102, 1) Euler equation

−σc̃t = R̃t − σc̃t+1 and 2) Law of Motion of Capital Kk̃t = IĨt + Kk̃t−1, which is used in

equation 104, we should select the equation 2 because the equation 1 is implicitly comprised

in the mapping from st−1|t−1 to ct in equation 103. Otherwise we redundantly use the linear
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constraints and the matrix A11 + A12P21G in equation 107 will not be well-defined.

Furthermore, the law of motion of perception of unobservable variables could be derived

through plugging equation 96 into equation 97 to yield

Xt|t = AsXt−1|t−1 + P sHXt + P sϵvt (105)

However, It is not all the state variables st that is unobservable, so I rewrite the law of motion of

perceived state variable st|t below. Without loss of generality, I assume the unobservable state

variables lay on the last nx row (in this paper nx = 10 as equation 93 shows).

st|t = Fst−1|t−1 +Gst +GP sϵvt (106)

where F =

[
0 0

0 As

]
, G =

[
I 0

0 P sH

]
and GP s =

[
0

P s

]
.

And then plug equation 106 back to above equation 104

A11st+A12P21

(
Fst−1|t−1 +Gst +GP sϵvt

)
= B11st−1+B12

(
P21st−1|t−1 +Qw

2 wt +Qv
2vt
)
+ηwt

(A11 + A12P21G) st = B11st−1 + (B12P21 − A12P21F ) st−1|t−1 + (B12Q
w
2 + η)wt

+ (B12Q
v
2 − A12P21GP sϵ) vt (107)

Simplify above equation to

Ỹt =MỸt−1 +DΞt (108)

where

Ỹt =

 st

st|t

ct



AL =

 I 0 0

−G I 0

0 0 I



BL =

 P̃11 P̃12 0

0 F 0

0 P21 0



CL =

 Q̃11 Q̃12

0 P sϵ

Qw
2 Qv

2


M = A−1

L BL, D = A−1
L CL, P̃11 = (A11 + A12P21G)

−1B11,
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P̃12 = (A11 + A12P21G)
−1 (B12P21 − A12P21F ), Q̃11 = (A11 + A12P21G)

−1 (B12Q
w
2 + η)

and

Q̃12 = (A11 + A12P21G)
−1 (B12Q

v
2 − A12P21GP sϵ).

H.9 Solve Rational Expectation model with imperfect information in sec-
ond order

H.9.1 Necessity

Given the utility function Ut (ct, ht) where ct is the nondurable consumption and ht is the

residential asset, we can take taylor expansion around the steady states to yield

Ut (ct, ht) ≈ U + Ucc̃t + Uhh̃t +
1

2
Uccc̃

2
t +

1

2
Uhhh̃

2
t + Uhcc̃th̃t + ◦t

where ◦t is the higher order term. However I cannot use c̃t as the result in first order because of

two reason:

1) the precautionary saving motive will disappear as now ∂c̃t
∂σ2 = 0. Then the quadratic term

will be misspecified in dynamic path and the calculated welfare will be incorrect.

2) In the heterogeneous agent model, there is no steady state for each household and above

taylor expansion will not exist.

Therefore I propose the method below to conduct the second-order perturbation under

imperfect information.

The main trick I used is that the certainty equivalence will still hold, only in the information

updated process in second order perturbation. Now consider the policy function as

yt = p1yt−1 + p2y
2
t−1 + σp3yt−1εt + k1xt−1|t−1 + k2x

2
t−1|t−1 + k3yt−1xt−1|t−1 + k4xt−1|t−1εt

+ q1σεt + q2σ
2

where yt is the standard variables that we know it perfectly but xt is the variable that we cannot

perfectly observe. σ2 represents the change in the variance of shock term and q2 is just the

precautionary saving effect.

The only difference between imperfect information model and perfect information model

is that all the policy related to perception, k1, k2, k3... are affected by σ2 as people form their

expectation through the variance of the shock. However, because it is affect by the quadratic

form of variance, σ2, instead of standard derivation σ, its final effect is third order and in second

order case. For instance, ∂k1
∂σ

∣∣
σ=0

= 0 holds, therefore ∂2k1xt−1|t−1

∂σ∂σ
= 0 at steady states.
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H.9.2 Steps

Write the system of equations as

G(xt−1, yt, xt, yt+1, σ) = F (xt−1, ut, ut+1, σ) = 0

However since the η can be calculated from the covariance matrix of the shock ϵt (a shock on the

variance of the model. It is a nk vector yet if we consider it is the shock on the variance ut, we

can set some elements in ϵt as zero), we can leave it into Σϵ.

Take second-order approximation

F (xt−1, ut, ut+1, σ) = F 1(xt−1, ut, ut+1, σ)

+
1

2

[
Fxx (xt−1 ⊗ xt−1) + Fuu (u⊗ u) + Fu′u′ (u

′ ⊗ u′) + Fσσσ
2
]

+ Fxu (x⊗ u) + Fxu′ (x⊗ u′) + Fyσσx+ Fuu′ (u⊗ u′) + Fuσutσ + Fu′σu
′σ

Because u and u′ are the linear innovation to the state variable x and x′, Fu is just a constant

matrix such that Fu = Gx′
∂x′

∂u
+Gy

∂y
∂u

+Gy′
∂y′

∂x
∂x
∂u

. This can be verified through the second-order

policy functions

xt =
1

2
hσσσ

2 + hxxt−1 + huut +
1

2
hxx (xt−1 ⊗ xt−1) +

1

2
huu (ut ⊗ ut) + hxu (xt−1 ⊗ ut)

and

yt =
1

2
gσσσ

2 + gxxt−1 + guut +
1

2
gxx (xt−1 ⊗ xt−1) +

1

2
guu (ut ⊗ ut) + gxu (xt−1 ⊗ ut)

yt+1 =
1

2
gσσσ

2 + gxxt + guut+1 +
1

2
gxx (xt ⊗ xt) +

1

2
guu (ut+1 ⊗ ut+1) + gxu (xt ⊗ ut+1)

Therefore Fyu = Fyu′ = Fuu′ = Fuσut = Fu′σ = 0. Simplify to

Et {F (xt−1, ut, ut+1, σ)} = Et
{
F 1(xt−1, ut, ut+1, σ)

}
+

1

2

[
Fxx (xt−1 ⊗ xt−1) + Fuu (u⊗ u) + Fu′u′σ

2−→Σ ϵ + Fσσσ
2
]

+ Fxu (x⊗ u) + Fuσutσ + Fyσσx

To understand the
−→
Σ ϵ and σ = 0, let use write ut as ut = εt + σϵt where Σε = I and

−→
Σ ϵ = vec (Σϵ). The shock εt represents the first order shock that household does not take

into account its variance into policy function (yet it indeed has the variance). ϵt is the second

order shock that household takes into account its variance and has precautionary saving motive.

Therefore the existence of
−→
Σ ϵ matches that meaning that we only care about the add-on variance

of ut that has second order effect. Therefore the first order effect of ut or ut+1 is zero (or even
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not zero is already considered in F 1(xt−1, ut, ut+1, σ)).

Further, the chain rule in partial derivative can only work when the “differential point” is

fixed. For instance, the condition

xt−1 =
1

2
hσσσ

2+hxxt−2+huut−1+
1

2
hxx (xt−2 ⊗ xt−2)+

1

2
huu (ut−1 ⊗ ut−1)+hxu (xt−1 ⊗ ut−1)

also hold. Does ∂G
∂σ2 = ... + ∂G

∂xt−1

∂xt−1

∂xt−2

∂xt−2

∂σ2 hold? NO! Because ∂xt−1

∂xt−2
and ∂xt−2

∂σ2 exist is

conditional on the the condition that we know xt−2, which we do not know.

Now let me solve them one by one. Firstly, write the function of xt, yt and yt+1
32

Fxx = Gygxx +Gx′hxx +Gy′ [gxhxx + gxx (hx ⊗ hx)]

+Gxx (Ink ⊗ Ink) +Gxy (Ink ⊗ gx) +Gxx′ (Ink ⊗ hx) +Gxy′ (Ink ⊗ gxhx)

+Gyx (gx ⊗ Ink) +Gyy (gx ⊗ gx) +Gyx′ (gx ⊗ hx) +Gyy′ (gx ⊗ gxhx)

+Gx′x (hx ⊗ Ink) +Gx′y (hx ⊗ gx) +Gx′x′ (hx ⊗ hx) +Gx′y′ (hx ⊗ gxhx)

+Gy′x (gxhx ⊗ Ink) +Gy′y (gxhx ⊗ gx) +Gy′x′ (gxhx ⊗ hx) +Gy′y′ (gxhx ⊗ gxhx)

= 0

Rewrite it as

[
Gx′ +Gy′gx Gy

] [ hxx

gxx

]
+
[
0 Gy′

] [ hxx

gxx

]
(hx ⊗ hx) +Bx = 0

Secondly

Fuu = Gyguu +Gx′huu +Gy′ [gxhuu + gxx (hu ⊗ hu)]

+Gyy (gu ⊗ gu) +Gyx′ (gu ⊗ hu) +Gyy′ (gu ⊗ gxhu)

+Gx′y (hu ⊗ gu) +Gx′x′ (hu ⊗ hu) +Gx′y′ (hu ⊗ gxhu)

+Gy′x′ (gxhu ⊗ hu) +Gy′y (gxhu ⊗ gu) +Gy′y′ (gxhu ⊗ gxhu)

= 0

Rewrite it as [
Gx′ +Gy′gx Gy

] [ huu

guu

]
+Bu1 = 0

32 1
2
∂2hxx(xt−1⊗xt−1)

∂xt−1∂xt−1
= 1

22hxx = hxx
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Thirdly

Fxu = Gygxu +Gx′hxu +Gy′ [gxhxu + gxx (hx ⊗ hu)]

+Gxy (Ink ⊗ gu) +Gxx′ (Ink ⊗ hu) +Gxy′ (Ink ⊗ gxhu)

+Gyy (gx ⊗ gx) +Gyx′ (gx ⊗ hu) +Gyy′ (gx ⊗ gxhu)

+Gx′y (hx ⊗ gu) +Gx′x′ (hx ⊗ hu) +Gx′y′ (hx ⊗ gxhu)

+Gy′y (gxhx ⊗ gu) +Gy′x′ (gxhx ⊗ hu) +Gy′y′ (gxhx ⊗ gxhu)

= 0

Rewrite it as [
Gx′ +Gy′gx Gy

] [ hxu

gxu

]
+Bu2 = 0

Forthly

Fσσ = Gxhσσ +Gy [gσσ + gxhσσ] +Gx′ [hσσ + hxhσσ] +Gy′ [gσσ + gxhσσ + gxhxhσσ]

where hu,σ2 and gu,σ2 is solved from the perturbation around the first order policy function. Even

though ut = εt + σϵt, because at time t ut is already realized, there is no expectation in front

ϵt, Gyy (gu ⊗ gu) (ϵt ⊗ ϵt) = Gyguu (Inu ⊗ Inu) (ϵt ⊗ ϵt) = ... = 0 will hold around the steady

state ϵ = 0. Throughout the calculation of Fxx, Fuu, Fxu and Fσσ, we do not need to care about

the shock coefficient η because Guu = 0. All of its effect is already implied in hu and gu.

Furthermore, there is no higher order expectation effect here (up to second order) such as

Gygu,σ2u+Gx′hu,σ2u+Gy′ [gu,σ2 + gxhu,σ2 ]u as u = 0. Yet higher order approximation will

have this problem. Meanwhile remember that in first order even we have u > 0, because σ = 0,

the first order effect Gygu,σuσ = hu,σuσ = 0. The reason is that the policy will not derivative

until second order or higher because of σ2, the variance is second order. Then the effect of this

derivation, derivation in dynamic with xt or xt ⊗ xt, is at least third-order which will be zero

under second-order approximation.

and

Fu′u′ = Gy′guu +Gy′y′ (gu ⊗ gu)

Therefore

Fu′u′
−→
Σ ϵσ

2 + Fσσσ
2 =

(
Fu′u′

−→
Σ ϵ + Fσσ

)
σ2 = 0

holds, which is equivalent to

Fu′u′
−→
Σ ϵ + Fσσ = 0
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Rearrange to

[
Gx +Gx′ +Gy′gx Gy +Gy′

] [ hσσ

gσσ

]
+ {Gy′guu +Gy′y′ (gu ⊗ gu)}

−→
Σ ϵ = 0

Taylor expansion around

K(zt−1, ut, ut+1, σ) = L(zt−1, yt, zt, yt+1, σ) = 0

Guess policy function

zt =
1

2
pσσσ

2 + pzzt−1 + puut +
1

2
pzz (zt−1 ⊗ zt−1) +

1

2
puu (ut ⊗ ut) + pzu (zt−1 ⊗ ut)

where zt =

[
xt

xt|t

]
with the known function

yt =
1

2
gσσσ

2 + gxxt−1|x−1 + guut +
1

2
gxx
(
xt−1|t−1 ⊗ xt−1|t−1

)
+

1

2
guu (ut ⊗ ut) + gxu

(
xt−1|t−1 ⊗ ut

)
=

1

2
gσσσ

2 + gxm2zt−1 + guut +
1

2
gxx (m2 ⊗m2) (zt−1 ⊗ zt−1) +

1

2
guu (ut ⊗ ut) + gxu (m2 ⊗ Inu) (zt−1 ⊗ ut)

and

yt+1 =
1

2
gσσσ

2 + gxxt|t + guut+1 +
1

2
gxx
(
xt|t ⊗ xt|t

)
+

1

2
guu (ut+1 ⊗ ut+1) + gxu

(
xt|t ⊗ ut+1

)
=

1

2
gσσσ

2 + gxm2zt + guut+1 +
1

2
gxx (m2 ⊗m2) (zt ⊗ zt) +

1

2
guu (ut+1 ⊗ ut+1) + gxu (m2 ⊗ Inu) (zt ⊗ ut+1)

where m2 =
[
0nk Ink

]
Take second-order approximation

K(zt−1, ut, ut+1, σ) = K1(zt−1, ut, ut+1, σ)

+
1

2

[
Kzz (z ⊗ z) +Kuu (u⊗ u) +Ku′u′ (u

′ ⊗ u′) +Kσσσ
2
]

+Kzu (z ⊗ u) +Kzu′ (z ⊗ u′) +Kzσσz +Kuu′ (u⊗ u′) +Kuσutσ +Ku′σu
′σ

Therefore

Et {K(zt−1, ut, ut+1, σ)} = Et
{
K1(zt−1, ut, ut+1, σ)

}
+

1

2

[
Kzz (z ⊗ z) + Fuu (u⊗ u) + Fu′u′

−→
Σ ϵσ

2 + Fσσσ
2
]

+Kzu (z ⊗ u) +Kzσσz +Kuσutσ
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Now let me solve them one by one. Firstly, write the function of xt, yt and yt+1

Kzz = Lygxx (m2 ⊗m2) + Lz′pzz + Ly′ [gxm2pzz + gxx (hx ⊗ hx) (m2 ⊗m2) (pz ⊗ pz)]

+ Lzz (I2nk ⊗ I2nk) + Lzy (I2nk ⊗ gxm2) + Lzz′ (I2nk ⊗ pz) + Lzy′ (I2nk ⊗ gxm2pz)

+ Lyz (gxm2 ⊗ I2nk) + Lyy (gxm2 ⊗ gxm2) + Lyz′ (gxm2 ⊗ pz) + Lyy′ (gxm2 ⊗ gxm2pz)

+ Lz′z (pz ⊗ I2nk) + Lz′y (pz ⊗ gxm2) + Lz′z′ (pz ⊗ pz) + Lz′y′ (pz ⊗ gxm2pz)

+ Ly′z (gxm2pz ⊗ I2nk) + Ly′y (gxm2pz ⊗ gxm2) + Ly′z′ (gxm2pz ⊗ pz) + Ly′y′ (gxm2pz ⊗ gxm2pz)

= 0

Then pzz is solved by

(Lz′ + Ly′gxm2) pzz + Cx = 0

Secondly,

Kuu = Lyguu + Lz′puu + Ly′ [gxm2puu + gxx (m2 ⊗m2) (pu ⊗ pu)]

+ Lyy (gu ⊗ gu) + Lyz′ (gu ⊗ pu) + Lyy′ (gu ⊗ gxm2pu)

+ Lz′y (pu ⊗ gu) + Lz′z′ (pu ⊗ pu) + Lz′y′ (pu ⊗ gxm2pu)

+ Ly′y (gxm2vpu ⊗ gu) + Ly′z′ (gxm2pu ⊗ pu) + Ly′y′ (gxm2pu ⊗ gxm2pu)

= 0

Then puu is solved by

(Lz′ + Ly′gxm2) puu + Cu1 = 0

Thirdly,

Kzu = Lygxu (m2 ⊗ Inu) + Lz′pzu + Ly′ [gxm2pzu + gxx (m2 ⊗m2) (pz ⊗ pu)]

+ Lzy (I2nk ⊗ gu) + Lzz′ (I2nk ⊗ pu) + Lzy′ (I2nk ⊗ gxm2pu)

+ Lyy (gxm2 ⊗ gu) + Lyz′ (gxm2 ⊗ pu) + Lyy′ (gxm2 ⊗ gxm2pu)

+ Lz′y (pz ⊗ gu) + Lz′z′ (pz ⊗ pu) + Lz′y′ (pz ⊗ gxm2pu)

+ Ly′y (gxm2pz ⊗ gu) + Ly′z′ (gxm2pz ⊗ pu) + Ly′y′ (gxm2pz ⊗ gxm2pu)

= 0

Then pzu is solved by

(Lz′ + Ly′gxm2) pzu + Cu2 = 0

Finally we have two approximations

Kσσ = Lzpσσ + Ly [gσσ + gxm2pσσ] + Lz′ [pσσ + pzpσσ] + Ly′ [gσσ + gxm2pσσ + gxm2pzpσσ]
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and

Ku′u′ = Ly′guu + Ly′y′ (gu ⊗ gu)

Because of

Kσσ +Ku′u′
−→
Σ ϵ = 0

The pσσ is solved by

[Lz + Lygxm2 + Lz′ (1 + pz) + Ly′gxm2 (1 + pz)] pσσ + Cσ = 0

137


	1 Introduction
	2 Empirical evidence
	2.1 Real price news shock
	2.2 Real price fake news shock

	3 Crowding-out effect of overbuilding: Insights from a simple model
	3.1 A simple Bewley-Huggett-Aiyagari model
	3.2 Crowding-out effect of overbuilding
	3.2.1 Intratemporal elasticity of substitution
	3.2.2 Credit constraint and liquidity
	3.2.3 Precautionary saving and wealth inequality
	3.2.4 Optimistic expectations and overbuilding


	4 Crowding-out effect of overbuilding: Full-fledged model
	4.1 Model Setting
	4.1.1 Household
	4.1.2 Firm
	4.1.3 Capital Producer
	4.1.4 Market cleaning
	4.1.5 Shocks

	4.2 Calibration
	4.2.1 Parameters 
	4.2.2 Data to Model: Moment Matching

	4.3 Quantitative Analysis
	4.3.1 Overbuilding and boom-bust cycle: News in the future and inefficiency of imperfect information
	4.3.2 Overbuilding and Boom-bust Cycle: Fake News
	4.3.3 Idiosyncratic income shock, financial friction, relative intratemporal elasticity of substitution
	4.3.4 Policy Analysis


	5 Conclusion
	A Data Description
	B Identification Step and Robustness Test to VAR Identification
	B.1 Identification with sign and zero restricution
	B.2 Contemporaneous real price shock
	B.2.1 Process of estimation and identification
	B.2.2 Contemporaneous real price shock
	B.2.3 Alternative detrend Method
	B.2.4 Confidence Band-MC Method


	C Purification Process
	C.1 Orthogonal Demand
	C.2 Another necessary condition of news shock identification: cov(g"0362gt,wt-1)=0
	C.3 Exogenous gt w.r.t wt
	C.3.1 Perfect Information
	C.3.2 Imperfect Information: fundamental impact gt is observable.
	C.3.3 Imperfect Information: fundamental impact gt is unobservable.

	C.4 Endogenous gt w.r.t wt
	C.4.1 Perfect Information
	C.4.2 Imperfect Information: fundamental impact gt is unobservable.

	C.5 Endogenality, Heteroscedasticity and Biased-estimation Problem during Purification
	C.5.1 get wt out of 5
	C.5.2 run regression of 5 on wt

	C.6 Purified perception on the status of housing market

	D Micro Foundation to Identification and Tests
	D.1 Literature in modeling the news and fake news
	D.1.1 Perfect News
	D.1.2 Noisy News
	D.1.3 Fake News
	D.1.4 Fake News in Perfect News
	D.1.5 Fake News in Noisy News

	D.2 Numerical test to identification: A simple RBC model
	D.2.1 Equations used to solve the state space model
	D.2.2 Quantitative Exercise

	D.3 Two examples of “offset” identification (gt is exogenous w.r.t wt)
	D.3.1 The fundamental impact gt is observable.
	D.3.2 The fundamental impact gt is unobservable.
	D.3.3 Proof of equation 52

	D.4 Two examples of “offset” identification (gt is endogenous w.r.t wt)
	D.4.1 The fundamental impact gt is observable.
	D.4.2 The fundamental impact gt is unobservable.
	D.4.3 Proof of equation 55

	D.5 Identification Test
	D.5.1 The fundamental impact gt is observable.
	D.5.2 The fundamental impact gt is unobservable.


	E Perturbation result around the Simple Model
	E.1 Proof of Proposition 2
	E.2 Derivation of the Definition of Intratemporal Elasticity of substitution 16
	E.3 Proof of Proposition 3
	E.4 Proof of Corollary 1
	E.5 Proof of Corollary 2
	E.6 Proof of Proposition 4 and 5

	F Toy model with global solution
	F.1 General equilibrium is important
	F.2 House supply is the key to determine non-durable consumption
	F.3 Unseparable utility function
	F.3.1 partial effect
	F.3.2 Other utility function

	F.4 Standard utility function
	F.4.1 general effect
	F.4.2 Infinite horizon condition

	F.5 Separable utility function
	F.5.1 partial effect
	F.5.2 general effect


	G Equilibrium condition of the full fledged model
	G.1 Focs
	G.1.1 Focs in production sector
	G.1.2 Focs in consumer sector
	G.1.3 Steady State condition in production sector

	G.2 Alternative Setting to Capital Producer
	G.2.1 Capital Producer(Setting I)
	G.2.2 Capital Producer(Setting II)
	G.2.3 Capital Producer(Setting III)
	G.2.4 Capital Producer(Setting IV)


	H Numerical solution
	H.1 Calibration to full fledged model
	H.2 Bayesian estimation to full fledged model
	H.2.1 Moments Selection and Theoretical moments after filter
	H.2.2 Bayesian GMM

	H.3 Solution method to simple model
	H.3.1 Reconstruction
	H.3.2 Solution Steps

	H.4 Solution method to simple model with separable utility function
	H.4.1 Reconstruction and new FOCs

	H.5 Expected news shock
	H.6 Kalman Filter
	H.7 Model Reconstruction and Solution Process
	H.7.1 Preliminaries
	H.7.2 Decision Problems
	H.7.3 Solve step

	H.8 Solve Rational Expectation model with imperfect information
	H.9 Solve Rational Expectation model with imperfect information in second order
	H.9.1 Necessity
	H.9.2 Steps



